

Operating Instructions

RI FB/i Automation V1.0 RI MOD/i CC Powerlink RI MOD/i CC ProfiNet IO-2P RI MOD/i CC Modbus TCP-2P

EN-US Operating instructions

Table of contents

General	5
Safety	5
Device Concept	5
Block diagram	6
Scope of supply	6
Required Tools and Materials	6
Installation Requirements	6
Connection Sockets and Indicators on the Robot Interface	7
Connections on the Robot Interface	7
LEDs on Robot Interface PCB	7
LEDs for Power Supply Diagnosis	8
LEDs for Network Connection Diagnosis	9
Connections and indicators on the bus module - Powerlink	10
Connections and indicators	10
Connections and indicators on the bus module - ProfiNet IO-2P	12
Connections and indicators on RJ 45 module	12
Connections and indicators on the bus module - Modbus TCP-2P	14
Connections and indicators on RJ 45 module	14
Powerlink technical data	16
Environmental Conditions	16
Robot Interface Technical Data	16
Data transfer properties	16
Configuration parameters	16
ProfiNet IO-2P technical data	18
Environmental Conditions	18
Robot Interface Technical Data	18
Data transfer properties	18
Configuration parameters	18
Modbus TCP-2P technical data	20
Environmental Conditions	20
Robot Interface Technical Data	20
Data transfer properties	20
Configuration parameters	20
Configuring the robot interface - Powerlink	22
General	22
Setting the process image	22
Setting the node address with dip switch(example)	22
Configure node address	23
Configuring the robot interface - ProfiNet IO-2P	24
General	24
Setting the process image	24
Setting the node address with dip switch(example)	24
IP Settings	25
Configuring the robot interface - Modbus TCP-2P	26
General	26
Setting the process image	26 26
Setting the IP address	
Installing the Robot Interface	28 28
Safety Proparation	20 28
Preparation Routing the Data Cable	29
	29 30
	30
Installing the Bus Module	30 31
Safety	31
Installing the Bus Module	31
Input and output signals - standard image Automation V1.0	32
Data types	32
Availability of input signals	32
Input signals (from robot to power source)	32
	-

Value range for Working mode	39
Value Range for TWIN Mode	40
Value range for Documentation mode	40
Availability of the output signals	41
Output signals (from power source to robot)	41
Assignment of Sensor Statuses 1–4	46
Value range for Function status	46
Value range Safety status	46
Value Range for Process Bit	46
TAG Table	47
Value range for TAG number 1 (Cooling unit mode)	49
Value range for TAG number 11 (Arc break monitoring)	49
Value range for TAG number 35 (Language)	49
Value range for TAG number 36 (Unit - metric/imperial)	
Value range for TAG number 37 (Welding standard - AWS/EU)	
Input and output signals Weldcom V2.0	
Data types	51
Input Signals	51
Value range Process line selection	54
Value Range for TWIN Mode	54
Value Range for Documentation mode	55
Value range for Working mode	55
Value Range for Command value selection	55
Output Signals	56
Value range for welding process and process image	58
Assignment of Sensor Statuses 1–4	59
Value range Safety status	59
TAG table	59
Input and output signals - retrofit image Weldcom TPS series	62
Input signals	62
Value Range for Operating Mode	64
Output signals	65
TAG Table	66
Modbus – General Information	68
Protocol Description	68
Data Coding	
Application Data Unit (ADU)	69
Modbus Functions	70
03 (03) Read Holding Register	70
06 (06) Write Single Register	71
16 (10) Write Multiple Register	73
23 (17) Read/Write Multiple Register	75
103 (67) Read Holding Register Float	76
104 (68) Write Single Register Float	77

Safety

🚹 WARNING!

Danger from incorrect operation and work that is not carried out properly.

This can result in serious personal injury and damage to property.

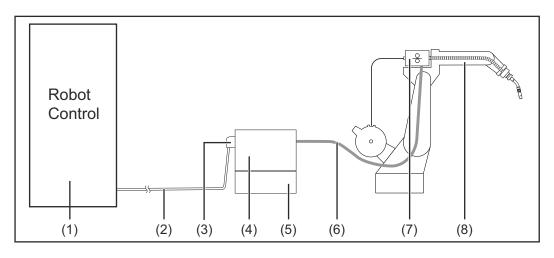
- All the work and functions described in this document must only be carried out by technically trained and qualified personnel.
- Read and understand this document in full.
- Read and understand all safety rules and user documentation for this equipment and all system components.

WARNING!

Danger from electrical current.

This can result in serious personal injury and damage to property.

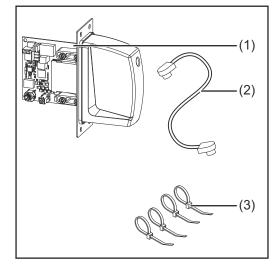
- Before starting work, switch off all the devices and components involved and disconnect them from the grid.
- Secure all devices and components involved so they cannot be switched back on.


WARNING!

Danger from unplanned signal transmission.

This can result in serious personal injury and damage to property.

• Do not transfer safety signals via the interface.


Device Concept The robot interface serves as an interface between the power source and standardized bus modules supporting a wide range of communication protocols. Fronius may factory-fit the robot interface in the power source but it can also be retrofitted by appropriately trained and qualified personnel.

- (1) Robot control system
- (2) SpeedNet data cable
- (3) Robot interface

- (4) Power source
 (5) Cooling unit
 (6) Interconnecting hosepack
 (7) Wirefeeder
 (8) Robot
- Block diagram

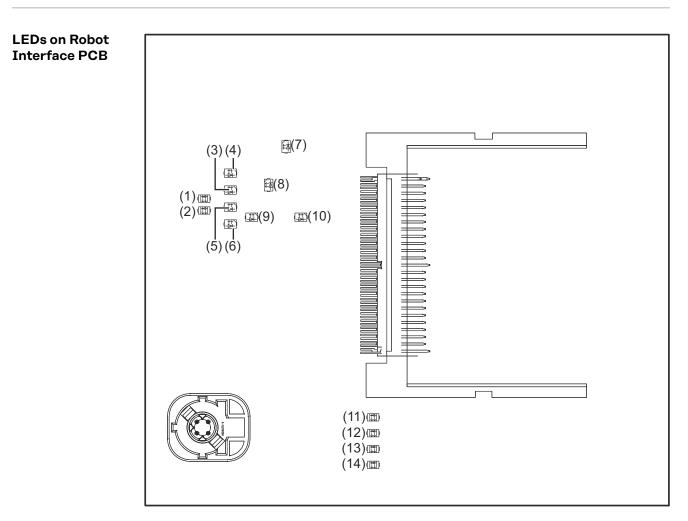
Scope of supply


(1)	RI FB/i Automation V1.0
(2)	Data cable 4-pin
(3)	2x cable ties
(4)	These Operating Instructions (not pictured)

Required Tools and Materials	 Screwdriver TX8 Screwdriver TX20 Screwdriver TX25 Diagonal cutting pliers

Installation Re-
quirementsThe robot interface may only be installed in the designated opening on the rear
of the power source.

Connection Sockets and Indicators on the Robot Interface


Connections on the Robot Interface

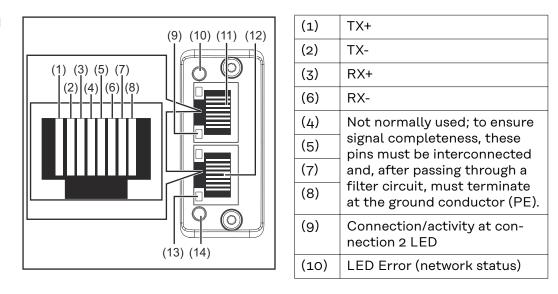
(1)	Power supply connection 2-pin
$\langle \alpha \rangle$	

(2) SpeedNet data cableconnection 4-pin

```
(3) Bus module connection
```


(1)	ETH1 LED	Green	For diagnosing the network connec-
(2)	ETH2 LED	Orange	tion. For details, see section below titled "LEDs for Network Connection Dia- gnosis"
(3)	LED 3	Green	No function
(4)	LED 4	Green	No function
(5)	LED 5	Green	 Flashes at 4 Hz = No SpeedNet connection Flashes at 20 Hz = Establishing SpeedNet connection Flashes at 1 Hz = SpeedNet con- nection established
(6)	LED 6	Red	Lights up when an internal error oc- curs. Remedy: Restart the robot interface. If this does not resolve the issue, in- form the service team.
(7)	+3V3 LED	Green	For diagnosing the power supply.
(8)	+24V LED	Green	For details, see section below titled "LEDs for Power Supply Diagnosis"
(9)	DIG OUT 2 LED	Green	Digital output 2. LED lights up when active
(10)	DIG OUT 1 LED	Green	Digital output 1. LED lights up when active
(11)	LED 11	Green	
(12)	LED 12	Green	No function
(13)	LED 13	Green	
(14)	LED 14	Green	

LEDs for Power
Supply Diagnosis


LED	Indicat- or	Meaning	Cause
+24V	Off	No supply voltage available for interface	 Robot interface power supply not established Power supply cable faulty
	Lights up	24 VDC supply voltage present on robot interface	
+3V3	Off	No operating voltage present on robot interface	 24 VDC supply voltage not present Robot interface power supply unit is faulty
	Lights up	3 VDC operating voltage present on robot interface	

LEDs for Network Connection Diagnosis

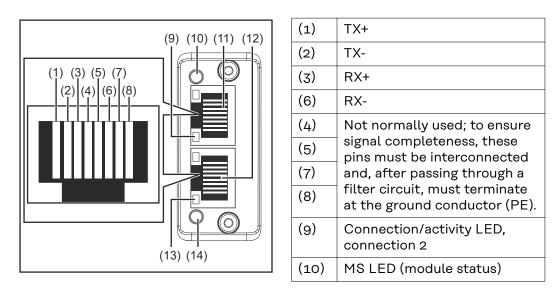
LED	Indicat- or	Meaning	Cause
FTH1	Off	No network connection	 No network connection established for inter- face Network cable faulty
	Lights up Flashes	Network connection estab- lished	
		Data transfer in progress	
ETH2	Off	Transmission speed 10 Mbit/s	
	Lights up	Transmission speed 100 Mbit/s	

Connections and indicators on the bus module -Powerlink

Connections and indicators

(11)	RJ45 connection 2
(12)	RJ45 connection 1
(13)	Connection/activity at connection 1 LED
(14)	LED Status (module status)

LED Status (module status)		
Status	Meaning	
Off	Not initialized / not active	
Flashes green quickly	NMT_CS_BASIC_ETHERNET No data traffic	
Flashes green (once)	NMT_CS_PRE_OPERATIONAL_1 Asynchronous data only	
Flashes green (twice)	NMT_CS_PRE_OPERATIONAL_2 Asynchronous and synchronous data. No PDO data: all process data are invalid. Received data are ignored.	
Flashes green (three times)	NMT_CS_READY_TO_OPERATE Ready for operation. Asynchronous and synchronous data. No PDO data: all process data are invalid. Received data are ignored.	
Lights up green	NMT_CS_OPERATIONAL Normal operation. Asynchronous and synchronous data. PDO data are received and sent.	


LED Status (module status)		
Status	Meaning	
Flashes green slowly	NMT_CS_STOPPED Module stopped (for example, for decommissioning) Asynchronous and synchronous data. No PDO data: all process data are invalid. Received data are ignored.	
Lights up red	Exception state, serious fault, etc.	

LED Error (network st	atus)
Status	Meaning
Off	No error
Lights up red	Exception state, serious fault, etc.
Lights up	Error

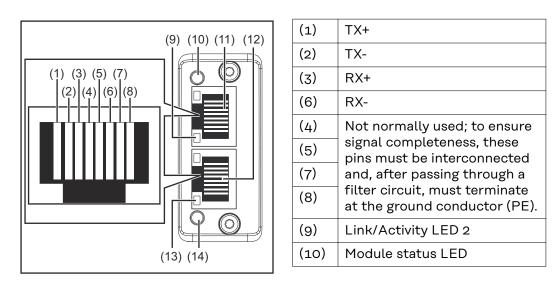
Connection/activityL	ED
Status	Meaning
Off	No connection
Lights up red	Connection established, no data traffic
Lights up	Connection established, data traffic present

Connections and indicators on the bus module -ProfiNet IO-2P

Connections and indicators on RJ 45 module

(11)	RJ-45 Ethernet connection 2
(12)	RJ-45 Ethernet connection 1
(13)	Connection/activity LED, connection 1
(14)	NS LED (network status)

Network Status LED	
Status	Meaning
Off	Offline; no power supply or no connection with IO Con- troller
Lights up green	Online (RUN); connection with IO Controller estab- lished, IO Controller in operation
Flashes green (once)	Online (STOP); connection with IO Controller estab- lished, IO Controller not in operation, IO data defect- ive, IRT synchronization not ready
Flashes green (per- manently)	In use by engineering tools in order to identify network nodes
Lights up red	The module has identified a serious internal fault
Flashes red (once)	Station name not set
Flashes red (twice)	IP address not set
Flashes red (three times)	Configuration error; expected identification does not match the actual identification


Module Status LED	
Status	Meaning
Off	No supply voltage or module in the setup or initialization mode

Module Status LED	
Status	Meaning
Lights up green	Normal operation
Flashes green (once)	Diagnosis process running
Lights up red	Emergency situation, serious fault, etc.
Lights up green and red alternately	Firmware update. Do not disconnect the module from the power supply during the update—this could result in damage to the module.

Connection/Activity LEDStatusMeaningOffNo connection, no activityLights up greenConnection established, no activityFlickers greenConnection established, activity present

Connections and indicators on the bus module -Modbus TCP-2P

Connections and indicators on RJ 45 module

(11)	RJ-45 Ethernet connection 2
(12)	RJ-45 Ethernet connection 1
(13)	Link/Activity LED 1
(14)	Network status LED

Network Status LED:

Status	Meaning
Off	No IP address or exception state
Lights up green	At least one Modbus message received
Flashes green	Waiting for first Modbus message
Lights up red	IP address conflict, serious error
Flashes red	Connection timeout. No Modbus message was received within the period defined for the "Process active timeout"

Module Status LED:

Module Status LED.	
Status	Meaning
Off	No supply voltage
Lights up green	Normal operation
Lights up red	Major error (exception state, serious fault, etc.)
Flashes red	Minor error
Alternates between red and green	Firmware update in progress

Link/Activity LED:	
Status	Meaning
Off	No connection, no activity
Lights up green	Connection established (100 Mbit/s)
Flickers green	Activity (100 Mbit/s)
Lights up yellow	Connection established (10 Mbit/s)
Flickers yellow	Activity (10 Mbit/s)

Γ

Powerlink technical data

Environmental		
Conditions		
		•
	- During operation: -10 °C	C to +40 °C (14 °F to 104 °F)
	•	
	Ambient air: free of dust, ac	cids, corrosive gases or substances, etc.
	Altitude above sea level: up	to 2000 m (6500 ft).
Robot Interface	Power supply	Internal (24 V)
Technical Data	Degree of protection	IP 23
Data transfer properties	Transfer technology: Ethernet	
	Transmission speed: 100 Mbit/s, half duplex mod	de
	Bus connection: Ethernet RJ45	
Configuration parameters		
	Parameter	Value
	Vendor-ID	000002C1 _{hex}
	Product-Code	00010341 _{hex}
	Temperature range of ambient air: - During operation: -10 °C to +40 °C (14 °F to 104 °F) - During transport and storage: -20 °C to +55 °C (-4 °F to 131 °F) Relative humidity: - - Up to 50% at 40 °C (104 °F) - Up to 90% at 20 °C (68 °F) Ambient air: free of dust, acids, corrosive gases or substances, etc. Altitude above sea level: up to 2000 m (6500 ft). Power supply Internal (2 Degree of protection II Permet Medium: When selecting the cable, plug, and terminating resistors, the Powerlink assembly guideline for the planning and installation of Powerlink systems must be observed. Transmission speed: 100 Mbit/s, half duplex mode Bus connection: Ethernet RJ45 In some robot control systems, it may be necessary to state the configuratio parameters described here so that the bus module can communicate with th bot. Parameter Value Vendor-ID 000002C1 _{hex}	

Parameter	Value	
Device Type	000000C _{hex}	
Manufacturer Name	Fronius International GmbH	

ProfiNet IO-2P technical data

	Device ID	0341 _{hex} (833 _{dec}) Fronius ProfiNet IO 2-port								
	Parameter	Value								
Configuration parameters		rol systems, it may be necessary to state the configuration bed here so that the bus module can communicate with the ro-								
	Bus connection: Ethernet RJ45/SC	CRJ (fiber optic)								
	Transmission spee 100 Mbit/s, full du									
	D4UGG0150A20									
	Medium: When selecting the cable, plug, and terminating resistors, the Profinet as- sembly guideline for the planning and installation of Profinet systems must be observed.									
Data transfer properties	Transfer technolo Ethernet	gy:								
Technical Data	Degree of protect									
Robot Interface	Power supply	Internal (24 V)								
		a level: up to 2000 m (6500 ft).								
	Ambient air: free of dust, acids, corrosive gases or substances, etc.									
	Relative humidity: - Up to 50% at - Up to 90% at	40 °C (104 °F)								
		e of ambient air: ion: -10 °C to +40 °C (14 °F to 104 °F) ort and storage: -20 °C to +55 °C (-4 °F to 131 °F)								
		evere damage to equipment. operate the device under the following environmental condi-								
		rohibited environmental conditions.								
Environmental Conditions										

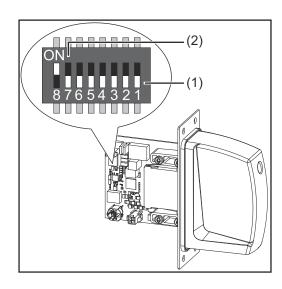
Parameter	Value
Vendor ID	01B0 _{hex} (432 _{dec}) Fronius International GmbH
Station Type	fronius-fb-automation-1-0-pn

The following parameters provide detailed information about the bus module. The ProfiNet master can access the data using acyclic read/write services.

Parameter	Value
IM Manufacturer ID	01B0 _{hex} (432 _{dec}) Fronius International GmbH
IM Order ID	4.044.034
IM Revision Counter	0000 _{hex} (0 _{dec})
IM Profile ID	F600 _{hex} (62976 _{dec}) Generic Device
IM Profile Specific Type	0004 _{hex} (4 _{dec}) No profile
IM Version	0101 _{hex} (257 _{dec})
IM Supported	0000 _{hex} (0 _{dec}) IMO supported

Modbus TCP-2P technical data

Environmental Conditions										
	A risk is posed by po This can result in se ► Only store and o tions.	ons. lowing environmental condi-								
	Temperature range - During operation - During transpo	04 °F) 2 (-4 °F to 131 °F)								
	Relative humidity: - Up to 50% at 4 - Up to 90% at 2									
	Ambient air: free of dust, acids, corrosive gases or substances, etc. Altitude above sea level: up to 2000 m (6500 ft).									
Robot Interface	Power supply		Internal (24 V)							
Technical Data	Degree of protection	on	IP 23							
Data transfer	RJ45 connection									
properties	Transmission techr	Ethernet								
	Medium: (4 x 2 twisted-pair		Category 3 (10 Mbit/s) Category 5 (100 Mbit/s)							
	Transmission speed	d:	10 Mbit/s or 100 Mbit/s							
	Bus connection:		RJ45 Ethernet							
Configuration parameters		ol systems, it may be necessary ed here so that the bus module o								
	Parameter	Value								
	Vendor Name	Fronius International Gmbl	Н							
	Product Code	0303 _{hex} (771 _{dec})								
	Vendor URL	www.fronius.com								
	Product Name	fronius-fb-automation-1-0-	-modbus-tcp							


Fronius Modbus TCP

Model Name

Parameter	Value
User Application	Fronius welding controller for the TPS/i with Fronius
Name	Automation 1.0

Configuring the robot interface - Powerlink

General

The DIP switch on the robot interface is used to configure:

- The process image (standard image)
- The node address

Default setting for process image: Positions 7 and 8 of DIP switch set to OFF (1) = standard image = Automation V1.0

Default setting for node address = 192.168.010.000:

- Positions 6, 5, 3, and 1 of DIP switch set to OFF (1)
- Positions 2 and 4 of DIP switch set to ON (2)

NOTE!

Whenever changes are made to the DIP switch settings, the interface must be restarted in order for the changes to take effect.

(Re-start = disconnect and reconnect the power supply or execute the corresponding function on the power source website)

ro-				Dip s	witch				
	8	7	6	5	4	3	2	1	Configuration
	OFF	OFF	-	-	-	-	-	-	Standard image (Automation V1.0)
	OFF	ON	-	-	-	-	-	-	Not used
	ON	OFF	-	-	-	-	-	-	Not used
	ON	ON	-	-	-	-	-	-	Not used

Setting the node				Dip s	witch				
address with dip switch	8	7	6	5	4	3	2	1	Node address
(example)	-	-	OFF	OFF	OFF	OFF	OFF	ON	1
	-	-	OFF	OFF	OFF	OFF	ON	OFF	2
	-	-	OFF	OFF	OFF	OFF	ON	ON	3
	-	-	ON	ON	ON	ON	ON	OFF	62

The node address is set with positions 1 to 6 of the dip switch. The configuration is carried out in binary format. This results in a configuration range of 1 to 63 in decimal format.

Setting the process image

Configure node address

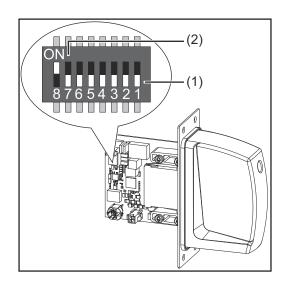
Upon delivery the configured node address is 0. The node address can be configured in two ways:

- Node addresses in the range of 1 to 63 can be configured with the dip switch.
- If node address 0 is kept on the dip switch, the node addresses in the range
 - of 1 to 63 can also be configured with the following configuration tools:the website of the power source

NOTE!

If the node address is set to higher than 0 with the dip switch, the relevant node address will be configured to the range of 1 to 63 after restarting the robot interface.

A node address that has been previously configured by a configuration tool will be overwritten.


NOTE!

If configurations have already been made, the network configurations can be restored to factory settings in two ways:

- set all dip switches back to 0 and restart interface or
- ▶ with the button Restore factory settings on the website of the power source

Configuring the robot interface - ProfiNet IO-2P

General

The DIP switch on the robot interface is used to configure:

- The process image
- The IP address

Default setting for process image: Positions 7 and 8 of DIP switch set to OFF (1) = standard image = Automation V1.0

NOTE!

Whenever changes are made to the DIP switch settings, the interface must be restarted in order for the changes to take effect.

(Re-start = disconnect and reconnect the power supply or execute the corresponding function on the power source website)

Setting the pro- cess image				Dip s	witch				
	8	7	6	5	4	3	2	1	Configuration
	OFF	OFF	-	-	-	-	-	-	Standard image (Automation V1.0)
	OFF	ON	-	-	-	-	-	-	Not used
	ON	OFF	-	-	-	-	-	-	Not used
	ON	ON	-	-	-	-	-	-	Not used

The process image defines the volume of data transferred and the system compatibility.

Setting the node				Dip s	witch				
address with dip switch	8	7	6	5	4	3	2	1	Node address
(example)	-	-	OFF	OFF	OFF	OFF	OFF	ON	1
	-	-	OFF	OFF	OFF	OFF	ON	OFF	2
	-	-	OFF	OFF	OFF	OFF	ON	ON	3
	-	-	ON	ON	ON	ON	ON	OFF	62

The node address is set with positions 1 to 6 of the dip switch. The configuration is carried out in binary format. This results in a configuration range of 1 to 63 in decimal format.

IP Settings

Node address O is set via the DIP switch on delivery. This corresponds to the following IP settings:

- IP address: 0.0.0.0
- Subnet mask: 0.0.0.0
- Default gateway: 0.0.0.0

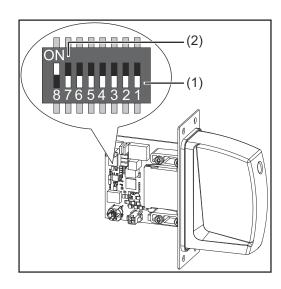
In the case of ProfiNet, the assignment of the IP address, the subnet mask, and the default gateway is carried out by the master. A device name is also assigned to the interface by the master.

As soon as the master has applied all the settings on the interface, the IP address that was set using the dip-switch is no longer valid.

The communication takes place via the IP address assigned by the master.

As long as the interface is not connected to a master, the IP settings can be set in the following ways:

- Using the DIP switch within the range defined by 192.168.0.xx
 (xx = DIP switch setting = 1 to 63)
- If the dip switch is set to 0, using the following configuration tools: - Using the website of the power source


NOTE!

If configurations have already been made, the network configurations can be restored to factory settings in two ways:

- set all dip switches back to 0 and restart interface or
- with the button **Restore factory settings** on the website of the power source

Configuring the robot interface - Modbus TCP-2P

General

The DIP switch on the robot interface is used to configure:

- The process image (standard im-age)
- The IP address

Default setting for process image: Positions 7 and 8 of DIP switch set to OFF (1) = standard image = Automation V1.0

Default setting for IP address = 192.168.255.200:

- Positions 6, 5, 3, and 1 of DIP switch set to OFF (1)
- Positions 2 and 4 of DIP switch set to ON (2)

NOTE!

Whenever changes are made to the DIP switch settings, the interface must be restarted in order for the changes to take effect.

(Re-start = disconnect and reconnect the power supply or execute the corresponding function on the power source website)

Setting the pro- cess image				Dip s	witch				
Cess mage	8	7	6	5	4	3	2	1	Configuration
	OFF	OFF	-	-	-	-	-	-	Standard image (Weldcom V2.0)
	OFF	ON	-	-	-	-	-	-	Not used
	ON	OFF	-	-	-	-	-	-	Retrofit image (Weldcom TPS series)
	ON	ON	-	-	-	-	I	-	Not used

The process image defines the volume of data transferred and the system compatibility.

Setting the IP address

You can set the IP address as follows:

Via the DIP switches within the range defined by 192.168.255.200 (xx = DIP switch setting = 01 to 55)

			Dip s	witch				
8	7	6	5	4	3	2	1	IP address
-	-	OFF	OFF	OFF	OFF	OFF	ON	192.168.255. 201

			Dip s	witch				
8	7	6	5	4	3	2	1	IP address
-	-	OFF	OFF	OFF	OFF	ON	OFF	192.168.255. 202
								:
-	-	ON	ON	OFF	ON	ON	OFF	192.168.255. 254
-	-	ON	ON	OFF	ON	ON	ON	192.168.255. 255

The IP address can be set via positions 1 to 6 of the DIP switch. The configuration is carried out in binary format. In decimal format, the setting range is 01 through 55.

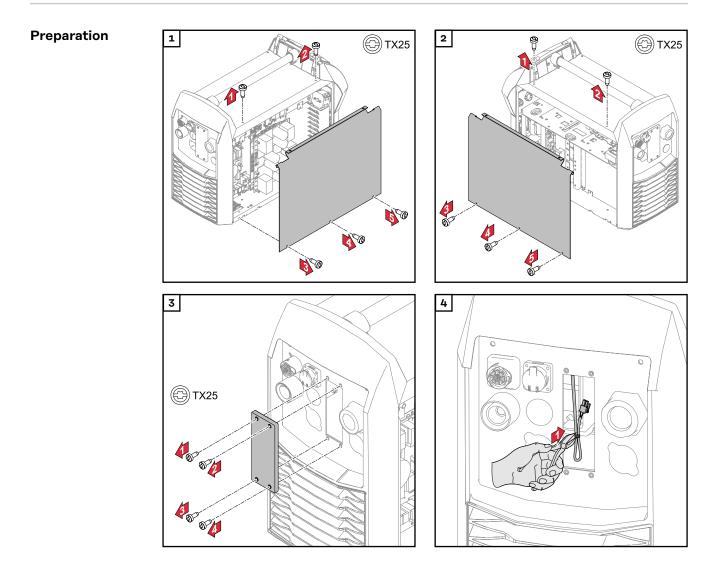
Installing the Robot Interface

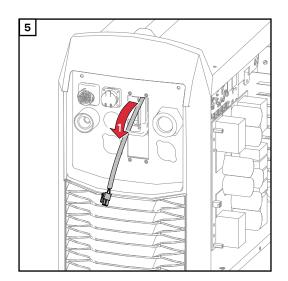
Safety

🚹 WARNING!

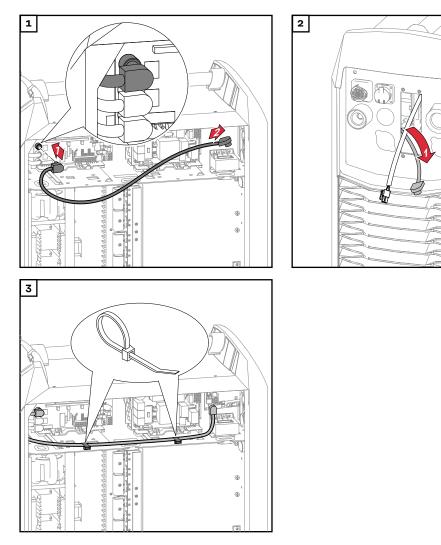
Electrical current hazard.

This can result in serious injuries or death.

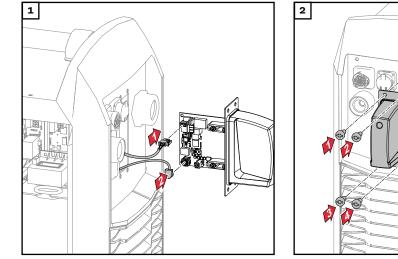

- Before starting work, switch off all the devices and components involved and disconnect them from the grid.
- Secure all the devices and components involved to prevent unintentional restarting.
- ► After opening the device, use a suitable measuring instrument to check that electrically charged components (such as capacitors) have been discharged.

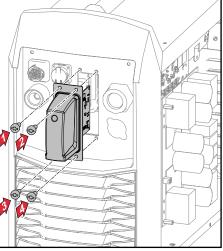

🔔 WARNING!

Electrical current hazard caused by an inadequate ground conductor connection.

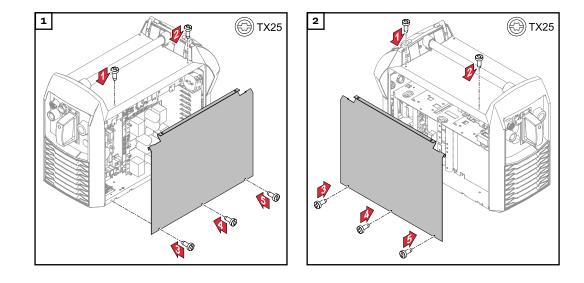

This can result in severe personal injury and damage to property.

Always use the original housing screws in the original quantity.





Routing the Data Cable



Installing the Robot Interface

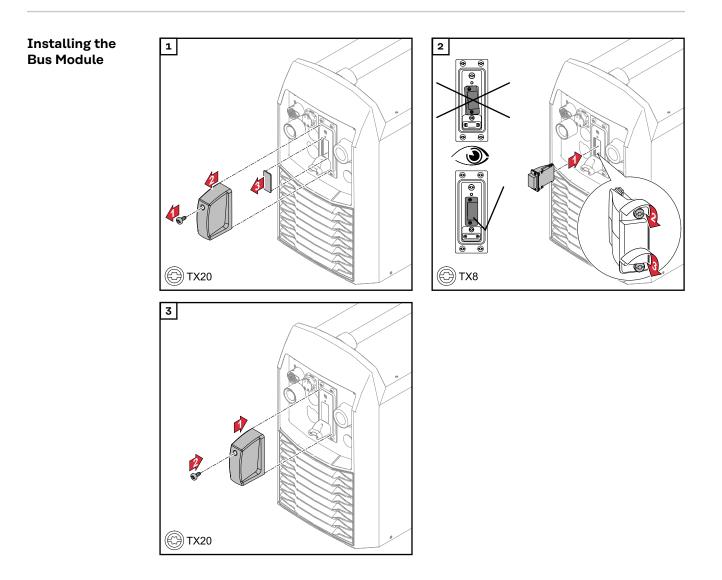
Final Tasks

Installing the Bus Module

Safety

🚹 WARNING!

Danger from electrical current.


Serious injuries or death may result.

- Before starting work, switch off all devices and components involved, and disconnect them from the grid.
- Secure all devices and components involved so that they cannot be switched back on.

WARNING!

Danger from electrical current due to inadequate ground conductor connection. Serious personal injury and property damage may result.

Always use the original housing screws in the quantity initially supplied.

Input and output signals - standard image Automation V1.0

Data types	 The following data types are used: UINT16 (Unsigned Integer) Whole number in the range from 0 to 65535 SINT16 (Signed Integer) Whole number in the range from -32768 to 32767
	Conversion examples: - for a positive value (SINT16) e.g. desired wire speed x factor 12.3 m/min x 100 = 1230 _{dec} = 04CE _{hex}
	 for a negative value (SINT16) e.g. arc correction x factor -6.4 x 10 = -64_{dec} = FFC0_{hex}
Availability of in- put signals	The input signals listed below are available from firmware V3.2.30 of the TPS/i power source.
Input signals	

(from robot to power source)

Address										
Relative Absolute		Absolute		≥ e						
WORD	вүте	BIT	BIT	Signal	Activity/ data type	Range	Factor			
		ο	ο	Welding Start	Increas- ing					
		1	1	Robot ready	High					
		2	2	Working mode Bit O	High					
	о	3	3	Working mode Bit 1	High	See table Value rai	nge for			
		4	4	Working mode Bit 2	High	Working mode on pa				
		5	5	Working mode Bit 3	High	39				
		6	6	Working mode Bit 4	High					
		7	7	—						
0	1	о	8	Gas on	Increas- ing					
		1	9	Wire forward	Increas- ing					
		2	10	Wire backward	Increas- ing					
		1	1	1	3	11	Error quit	Increas- ing		
		4	12	Touch sensing	High					
				5	13	Torch blow out	Increas- ing			
		6	14	Processline selection Bit 0	High					
		7	15	Processline selection Bit 1	High					

Address			SS							
F	Relative Absolute		Absolute		> e					
WORD	вүте	BIT	BIT	Signal	Activity/ data type	Range	Factor			
		0	16	Welding simulation	High					
	2	1	17	Synchro pulse on	High					
		2	18	SFI on	High					
		3	19	_						
	2	4	20	_						
		5	21	Booster manual	High					
		6	22	Wire brake on	High					
		7	23	Torchbody Xchange	High					
1		0	24	_						
		1	25	Teach mode	High					
		2	26	Valve on	High					
		3	27	_						
	3	4	28	_						
		5	29	Wire sense start	Increas- ing					
		6	30	Wire sense break	Increas- ing					
		7	31	_						
		0	32	TWIN mode bit 0	High	See table Value Range				
		1	33	TWIN mode bit 1	High	for TWIN Mode or 40	n page			
		2	34							
		3	35							
	4	4	36							
					5	37	Documentation mode	High	See table Value rar Documentation m page 40	
				6	38	_				
2		7	39	_						
		0	40	—						
		1	41	_						
		2	42	_						
	5	3	43	_						
		4	44	_						
		5	45	—						
		6	46	_						
		7	47	_						

Address			SS				
F	Relative Absolute		Absolute		7 9C		
WORD	ВҮТЕ	BIT	BIT	Signal	Activity/ data type	Range	Factor
		0	48	—			
		1	49	—			
		2	50	—			
	6	3	51	—			
		4	52	—			
		5	53	—			
		6	54	—			
3		7	55	—			
3		0	56	ExtInput1 => OPT_Output 1	High		
		1	57	ExtInput2 => OPT_Output 2	High		
	7	2	58	ExtInput3 => OPT_Output 3	High		
		3	59	ExtInput4 => OPT_Output 4	High		
		4	60	ExtInput5 => OPT_Output 5	High		
		5	61	ExtInput6 => OPT_Output 6	High		
		6	62	ExtInput7 => OPT_Output 7	High		
		7	63	ExtInput8 => OPT_Output 8	High		
	8	0-7	64–71	Welding characteristic- / Job	UINT16	0 to 65535	1
4	9	0-7	72–79	number	011110	0 10 05535	-
5	10, 11	0-7	D–7 80–95 MIG/MAG p MIG/MAG s MIG/MAG s MIG/MAG L CMT, Consta	For the welding processes MIG/MAG pulse synergic, MIG/MAG standard synergic, MIG/MAG standard manual, MIG/MAG PMC, MIG/MAG LSC, CMT, ConstantWire: Wire feed speed command value	SINT16	-327.68 to 327.67 [m/min]	100
				For job mode: Power correction	SINT16	-20.00 to 20.00 [%]	100

Address			SS				
F	Relative		Absolute		> 9		
WORD	ВҮТЕ	BIT	BIT	Signal	Activity/ data type	Range	Factor
				For the welding processes MIG/MAG pulse synergic, MIG/MAG standard synergic, MIG/MAG PMC, MIG/MAG LSC, CMT:	SINT16	-10.0 to 10.0 [steps]	10
				Arclength correction			
6	12, 13	0-7	7 96–111	For the welding process MIG/MAG standard manual:	UINT16	0.0 to 6553.5 [V]	10
				Welding voltage			
				For job mode: Arclength correction	SINT16	-10.0 to 10.0 [steps]	10
				For the welding process Con- stantWire:	UINT16	0.0 to 6553.5 [A]	10
				Hotwire current			
7	14, 15	0-7	112–127	For the welding processes MIG/MAG pulse synergic, MIG/MAG standard synergic, MIG/MAG PMC, MIG/MAG LSC, CMT:	SINT16	-10.0 to 10.0 [steps]	10
1				Pulse-/dynamic correction			
				For the welding process MIG/MAG standard manual:	UINT16	0.0 to 10.0 [steps]	10
				Dynamic			
8	16	0-7	128–135	Wire retract correction	UINT16	0.0 to 10.0	10
	17	0-7	136–143				
9	18	0-7	144–151	Welding speed	UINT 16	0 to 6553.5	10
	19	0-7	152-159			[cm/min]	
10	20	0-7	160–167				
	21	0-7	168–175				
11	22	0-7	176–183				
	23	0-7	184-191				
12	24	0-7	192-199	-			
	25	0-7	200-207				
13	26	0-7	208–215	<u> </u>			
	27	0-7	216–223				

		Addres	SS				
F	Relati	ve	Absolute		> 90		
WORD	вүте	BIT	BIT	Signal	Activity/ data type	Range	Factor
14	28	0-7	224–231				
-4	29	0-7	232–239				
15	30	0-7	240–247	Wire forward / backward length	UINT16	OFF / 1 to	1
	31	0-7	248–255		011110	65535[mm]	-
16	32	0-7	256–263	Wire sense edge detection	UINT16	OFF / 0.5 to 20	10
10	33	0-7	264–271		0111110	[mm]	10
17	34	0-7	272–279				
-1	35	0-7	280–287				
18	36	0-7	288–295				
10	37	0-7	296–303				
19	38	0-7	304–311	Seam number	UINT16	0 to 65535	1
	39	0-7	312–319		011110	0.0000000	
		0	320	Disable Start-End-Parameter	High		
		1	321	Disable SFI-Parameter	High		
		2	322	Disable SP-Parameter	High		
		3	323	Disable Process-Mix-Parameter	High		
	40	4	324	Disable gas-settings	High		
	40	5	325	Disable components setup (TAG)	High		
		6	326	Disable Language/Units/Stand- ards (TAG)	High		
		7	327	Disable Penetration/Arclength- stabilizer	High		
20		ο	328	Disable CMT cycle step para- meter	High		
		1	329	—			
		2	330	—			
		3	331	—			
	41	4	332	Contact tip short circuit detec- tion	High		
		5	333	Pulse synchronization ratio Bit O	High		
		6	334	Pulse synchronization ratio Bit 1	High		
		7	335	CMT cycle step	High		

	Address						
F	Relati	ve	Absolute		_ e		
WORD	ВҮТЕ	BIT	BIT	Signal	Activity/ data type	Range	Factor
		0	336	Command value selection Bit 0	High		
		1	337	—			
		2	338	Enable resistance overwrite	High		
	42	3	339	Set resistance value	High		
21	42	4	340	Enable inductance overwrite	High		
		5	341	Set inductance value	High		
		6	342				
		7	343	—			
	43	0	344-351				
22	44	0-7	352-359	TAG Address 1	UINT 16	0 to 65535	1
22	45	0-7	360–367		0111110	0.0003333	-
23	46	0-7	368–375	TAG Value 1	UINT 16	0 to 65535	1
20	47	0-7	376–383		0111110	0.0005335	
24	48	0-7	384–391	TAG Command 1	UINT 8	1 to 2	1
24	49	0-7	392–399	—			
25	50	0-7	400-407	TAG Address 2	UINT 16	0 to 65535	1
20	51	0-7	408–415		0111110	0.0005335	
26	52	0-7	416–423	TAG Value 2	UINT 16	0 to 65535	1
20	53	0-7	424–431		0111110	0.000333	T
27	54	0-7	432–439	TAG Command 2	UINT 8	1 to 2	1
~1	55	0-7	440-447				
28	56	0-7	448–455	Command value gas	UINT 16	5 to 30	10
20	57	0-7	456–463		0111110	[l/min]	10
29	58	0-7	464–471	S2T-Starting current	UINT 16	0 to 200	1
29	59	0-7	472-479			[%]	Ť
	60	0-7	480–487			Off (0.0)/	
30	61	0-7	488–495	S2T-Starting current time	UINT 16	0.1 to 10.0 [s]	10
31	62	0-7	496–503	S2T End current	UINT 16	0 to 200	1
0-	63	0-7	504-511			[%]	_
	64	0-7	512-519	COT End ourset time -		Off (0.0)/	
32	65	0-7	520-527	S2T End current time	UINT 16	0.1 to 10.0 [s]	10
33	66	0-7	528-535	PM High power time corr.	SINT 16	-10 to +10	10
55	67	0-7	536-543			10 10 / 10	10
34 -	68	0-7	544-551	PM Low power time corr.	SINT 16	-10 to +10	10
54	69	0-7	552-559		011110	10 10 110	10

	4	Addres	SS				
F	Relati	ve	Absolute		≥ e		
WORD	вүте	BIT	BIT	Signal	Activity/ data type	Range	Factor
35	70	0-7	560-567	PM Low power corr.	SINT 16	-10 to +10	10
- 35	71	0-7	568–575			10 (0 / 10	10
36	72	0-7	576–583	CMT Cycle Step - Cycles (Spot	SINT 16	1 to 2000	1
30	73	0-7	584-591	size)		1 10 2000	-
37	74	0-7	592-599	CMT Cycle Step - Interval	SINT 16	0.01 to 2.00	1
57	75	0-7	600–607	break time		[s]	-
38	76	0-7	608–615	CMT Cycle Step - Interval	SINT 16	Permanent/1 to	1
30	77	0-7	616–623	cycles		2000	±
39	78	0-7	624–631	Spot welding time	SINT 16	0.1 to 10	10
39	79	0-7	632–639		0111110	[s]	10
40	80	0-7	640–647	Penetration stabilizer	SINT 16	0.0 to 5	10
40	81	0-7	648–655			0.0 10 0	10
41	82	0-7	656–663	Arc length stabilizer	SINT 16	0.0 to 5	10
41	83	0-7	664–671			0.0 10 5	10
	84	0-7	672–679	Phase shift Lead / Trail	UINT 8	Auto/0 to 95 [s]	1
42	85	0-7	680–687	Ignition delay Trail	UINT 8	Auto/Off/0.00 to 2.00 [s]	100
. 7	86	0-7	688–695				
43	87	0-7	696–703				
<i>L</i> . <i>L</i> .	88	0-7	704–711				
44	89	0-7	712–719				
45	90	0-7	720–727				
45	91	0-7	728–735				
1.6	92	0-7	736–743	Resistance	UINT 16	0 to +400	10
46	93	0-7	744-751	INCOIDLAIILE	0111110	[mOhm]	10
1.7	94	0-7	752–759	Inductance	LIINT 16	0 to +250	10
47	95	0-7	760–767		UINT 16	[microhenries]	10

EN-US

Value range for Working mode

Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Description
0	0	0	0	0	Internal welding parameter selection
0	0	0	0	1	Special 2-step mode characteristics
0	0	0	1	0	Job mode
0	1	0	0	0	2-step mode characteristics

Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Description
0	1	0	0	1	MIG/MAG standard manual
1	0	0	0	0	Disable Booster
1	1	0	0	0	R/L measurement
1	1	0	0	1	R/L alignment

Value range for operating mode

Value Range for TWIN Mode

Bit 1	Bit o	Description
0	0	TWIN Single mode
0	1	TWIN Lead mode
1	0	TWIN Trail mode
1	1	Reserved

Value range for TWIN mode

Value range for Documentation	Bit o	Documentation generator
mode	0	Power source
	1	Robot (Word 19)

Value range for documentation mode

Availability of the output signals

The output signals listed below are available from firmware V3.2.30 of the TPS/i power source.

Output signals (from power source to robot)

		Addre	SS				
F	Relati	ve	Absolute		⊃e		
WORD	вүте	ВІТ	BIT	Signal	Activity/ data type	Range	Factor
		ο	ο	Heartbeat Powersource	High / Low		
		1	1	Power source ready	High		
		2	2	Warning	High		
	0	3	3	Process active	High		
		4	4	Current flow	High		
		5	5	Arc stable- / touch signal	High		
		6	6	Main current signal	High		
0		7	7	Touch signal	High		
		ο	8	Collisionbox active	Low	0 = collision or cable break	
		1	9	Robot Motion Release	High		
		2	10	Wire stick workpiece	High		
	1	3	11	—			
		4	12	Short circuit contact tip	High		
		5	13	Parameter selection internally	High		
		6	14	Characteristic number valid	High		
		7	15	Torch body gripped	High		

		Addre	SS				
F	Relati	ve	Absolute		> ee		
WORD	вуте	BIT	BIT	Signal	Activity/ data type	Range	Factor
		0	16	Command value out of range	High		
		1	17	Correction out of range	High		
		2	18	—			
	2	3	19	Limit Signal	High		
	2	4	20	—			
		5	21	Standby active	High		
		6	22	Main supply status	Low		
1		7	23	—			
–		0	24	Sensor status 1	High		
		1	25	Sensor status 2	High	See table Assignment Sensor Statuses 1–4 of page 46	
		2	26	Sensor status 3	High		4 011
	3	3	27	Sensor status 4	High		
	3	4	28	—			
		5	29	—			
		6	30	—			
		7	31	—			
		0	32	Function status Bit O	High	See table Value rang	
		1	33	Function status Bit 1	High	Function status on 46	page
		2	34	—			
	4	3	35	Safety status Bit O	High	See table Value ra	-
	4	4	36	Safety status Bit 1	High	Safety status on p 46	bage
		5	37	—			
		6	38	Notification	High		
2		7	39	System not ready	High		
		0	40	—			
		1	41	—			
		2	42	—			
	5	3	43	—			
	5	4	44	—			
		5	45				
		6	46	—			
		7	47	—			

			Addres	SS					
$ \begin{array}{ c c c c c c c } & & & & & & & & & & & & & & & & & & &$	F	Relati	ve	Absolute		~ e			
$ \begin{array}{ c c c c c c c } & 1 & 49 & \ Process Bit 1 & \ High \\ \hline 2 & 50 & \ Process Bit 2 & \ High \\ \hline 3 & 51 & \ Process Bit 3 & \ High \\ \hline 4 & 52 & \ Process Bit 3 & \ High \\ \hline 5 & 53 & - & & & & & & & & & & & & & & & & & $	WORD	вуте	BIT	BIT	Signal	Activity data typ	Range	Factor	
$ \begin{array}{ c c c c c c c } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $			0	48	Process Bit O	High			
$ \begin{array}{ c c c c c c c } & 3 & 51 & Process Bit 3 & High \\ \hline 4 & 52 & Process Bit 4 & High \\ \hline 5 & 53 & - & & & & & & & & & & & & & & & & & $			1	49	Process Bit 1	High	See table Value R	lange	
$ \begin{array}{ c c c c c c c } & 3 & 51 & \text{Process Bit 3} & \text{High} \\ \hline 4 & 52 & \text{Process Bit 4} & \text{High} \\ \hline 5 & 53 & - & & & & & & & & & & & & & & & & & $			2	50	Process Bit 2	High		n page	
$ \begin{array}{ c c c c c c c } & 4 & 52 & \text{Process Bit 4} & \text{High} \\ \hline \\ $		6	3	51	Process Bit 3	High	46		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			4	52	Process Bit 4	High			
$ \begin{array}{ c c c c c c c } \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			5	53	—				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6	54	Gas nozzle touched	High			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	7		7	55	TWIN synchronisation active	High			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3		0	56	ExtOutput1 <= OPT_Input1	High			
$ \begin{array}{ c c c c c c c c c c } & \hline 3 & 59 & ExtOutput4 <= OPT_Input4 & High & & & & & & & \\ \hline 4 & 60 & ExtOutput5 <= OPT_Input5 & High & & & & & & \\ \hline 5 & 61 & ExtOutput6 <= OPT_Input6 & High & & & & & & \\ \hline 5 & 61 & ExtOutput6 <= OPT_Input7 & High & & & & & & \\ \hline 6 & 62 & ExtOutput8 <= OPT_Input8 & High & & & & & & \\ \hline 7 & 63 & ExtOutput8 <= OPT_Input8 & High & & & & & & \\ \hline 7 & 63 & ExtOutput8 <= OPT_Input8 & High & & & & & & \\ \hline 7 & 63 & ExtOutput8 <= OPT_Input8 & High & & & & & & \\ \hline 7 & 63 & ExtOutput8 <= OPT_Input8 & High & & & & & & \\ \hline 7 & 63 & ExtOutput8 <= OPT_Input8 & High & & & & & & \\ \hline 7 & 63 & ExtOutput8 &= OPT_Input8 & High & & & & & & \\ \hline 7 & 63 & ExtOutput8 = OPT_Input8 & High & & & & & & \\ \hline 7 & 63 & ExtOutput8 = OPT_Input8 & High & & & & & & \\ \hline 10 & 0 & -7 & 80 & & & & & & \\ \hline 11 & 0 & -7 & 80 & & & & & & \\ \hline 10 & 0 & -7 & 80 & & & & & & \\ \hline 11 & 0 & -7 & 80 & & & & & \\ \hline 12 & 0 & -7 & 96 & -103 & & & & \\ \hline 12 & 0 & -7 & 104 & -111 & & & & & \\ \hline 13 & 0 & -7 & 104 & -111 & & & & & \\ \hline 14 & 0 & -7 & 112 & -119 & & & & & \\ \hline 15 & 0 & -7 & 120 & -127 & & & & & \\ \hline 16 & 0 & -7 & 120 & -127 & & & & & \\ \hline 17 & 0 & -7 & 126 & -132 & & & & \\ \hline 18 & 0 & -7 & 126 & -132 & & & \\ \hline 19 & 10 & 0 & -7 & 152 & -159 & & & & \\ \hline 19 & 0 & -7 & 152 & -159 & & & & & \\ \hline 10 & 11 & 22 & 0 & -7 & 160 & -167 & & & & & \\ \hline 12 & 0 & -7 & 168 & -175 & & & & & \\ \hline 12 & 0 & -7 & 168 & -175 & & & & & \\ \hline 12 & 0 & -7 & 168 & -175 & & & & & \\ \hline 12 & 0 & -7 & 168 & -175 & & & & & \\ \hline 12 & 0 & -7 & 168 & -175 & & & & & \\ \hline 12 & 2 & 0 & -7 & 168 & -157 & & & & & \\ \hline 12 & 2 & 0 & -7 & 164 & -151 & & & & \\ \hline 13 & 2 & 0 & -7 & 164 & -151 & & & & \\ \hline 13 & 2 & 0 & -7 & 164 & -151 & & & & & \\ \hline 14 & 2 & 0 & -7 & 168 & -157 & & & & & \\ \hline 15 & 0 & -7 & 126 & -152 & & & & & \\ \hline 12 & 2 & 0 & -7 & 168 & -153 & & & & & \\ \hline 13 & 2 & 0 & -7 & 164 & -151 & & & & & \\ \hline 14 & 2 & 0 & -7 & 164 & -151 & & & & & & \\ \hline 15 & 0 & -7 & 164 & -151 & & & & & & & \\ \hline 16 & 0 & -7 & 168 & -151 & & & & & & & & \\ \hline 17 & 0 & 0 & 0 & 0 & 0 & & & & & & \\ \hline 18 & 0 $			1	57	ExtOutput2 <= OPT_Input2	High			
$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $			2	58	ExtOutput3 <= OPT_Input3	High			
$ \begin{array}{ c c c c c c c } & 4 & 60 & ExtOutput5 <= OPT_Input5 & High \\ \hline & & & & & & & & & & & & & & & & & &$		7	3	59	ExtOutput4 <= OPT_Input4	High			
$ \begin{array}{ c c c c c c c c c c } \hline & 6 & 62 & ExtOutput7 <= OPT_Input7 & High & Income Integral of Integral$			4	60	ExtOutput5 <= OPT_Input5	High			
$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $			5	61	ExtOutput6 <= OPT_Input6	High			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6	62	ExtOutput7 <= OPT_Input7	High			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			7	63	ExtOutput8 <= OPT_Input8	High			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		8	0-7	64–71	Woldingvoltage		0.0 to 707.67 [\/]	100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	9	0-7	72–79	weiding voltage	OINIIO	0.0 to 327.07 [V]	100	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	10	0-7	80–87	Wolding ourrent			10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	11	0-7	88–95		OINIIO	0.0 to 327.07 [A]	10	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	12	0-7	96–103	Wire food around		-327.68 to 327.67	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	13	0-7	104–111	wire reed speed	511110	[m/min]	100	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	14	0-7	112–119	Actual real value for seam		o to GEEZE	1000	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	′	15	0-7	120–127	tracking	OINIIO	0 10 05535	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q	16	0-7	128–135	Error number		0 to 65575	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	17	0-7	136–143		OINTIO	0.005535	Ŧ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		18	0-7	144–151	Warning number		o to GEEZE	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	19	0-7	152–159	warning number	OINIIO	0 10 05535	Ť	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	20	0-7	160–167	Motor ourrest Ma	QINT46	-327.68 to 327.67	100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		21	0-7	168–175			[A]	100	
11 23 0-7 184-191 Motor current M2 SIN16 [A] 100 12 24 0-7 192-199 Motor current M3 SIN16 -327.68 to 327.67 100 12 25 0-7 200-207 Motor current M3 SIN16 -327.68 to 327.67 100 13 26 0-7 208-215		22	0-7	176–183	Motor ourrest Mo	QINT46	-327.68 to 327.67	100	
12 25 0-7 200-207 Motor current M3 SINT16 027.00 to 027.07 100 13 26 0-7 208-215		23	0-7	184–191		011110		TOO	
12 25 0-7 200-207 Motor current M3 SIN116 [A] 100 13 26 0-7 208-215	10	24	0-7	192–199	Motor ourrest M7	OINT40	-327.68 to 327.67	100	
	12	25	0-7	200–207	Motor current M3	51N110		100	
	13 -	26	0-7	208–215					
		27	0-7	216–223	-				

		Address		SS				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F	Relati	ve	Absolute	-	~ e		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	WORD	вуте	BIT	BIT	Signal	Activity. data typ	Range	Factor
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	28	0-7	224–231				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		29	0-7	232–239				
$ \begin{array}{ c c c c c c c c c } \hline 31 & 0 & -7 & 248 - 255 & & & & & & & & & & & & & & & & & &$	15	30	0-7	240–247				
16 33 0-7 264-271 Wire position SINT16 Or Not of 101 100 17 34 0-7 272-279		31	0-7	248–255				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	32	0-7	256–263	Wire position	SINT16		100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		33	0-7	264–271			[mm]	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	34	0-7	272–279				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		35	0-7	280–287				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	36	0-7	288–295				
$ \begin{array}{ c c c c c c c } \hline 19 & \hline 39 & 0-7 & 312-319 & \hline \\ \hline 40 & 0 & 320-327 & \\ \hline 41 & 0 & 328-335 & - & \hline \\ \hline \\ \hline 21 & \hline 42 & 0-7 & 336-343 & \\ \hline 43 & 0-7 & 344-351 & \hline \\ \hline \\ \hline 43 & 0-7 & 344-351 & \hline \\ \hline \\ \hline 44 & 0-7 & 352-359 & \\ \hline \\ \hline 45 & 0-7 & 360-367 & \\ \hline \\ \hline 45 & 0-7 & 360-367 & \\ \hline \\ \hline \\ 45 & 0-7 & 360-367 & \\ \hline \\ \hline \\ 46 & 0-7 & 368-375 & \\ \hline \\ \hline \\ 46 & 0-7 & 376-383 & \\ \hline \\ \hline \\ 46 & 0-7 & 392-399 & - & & \\ \hline \\ \hline \\ 22 & \hline \\ \hline \\ 48 & 0-7 & 392-399 & - & & \\ \hline \\ \hline \\ 24 & \hline \\ \hline \\ 49 & 0-7 & 392-399 & - & & \\ \hline \\ \hline \\ 50 & 0-7 & 400-407 & \\ \hline \\ \hline \\ 51 & 0-7 & 408-415 & \\ \hline \\ \hline \\ \hline \\ 50 & 0-7 & 408-415 & \\ \hline \\ \hline \\ \hline \\ \hline \\ 52 & 0-7 & 416-423 & \\ \hline \\ \hline \\ \hline \\ \hline \\ 7 & 0-7 & 428-431 & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 58 & 0-7 & 440-447 & - & & \\ \hline \\ \hline \\ \hline \\ 28 & \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 59 & 0-7 & 426-463 & \\ \hline \\$		37	0-7	296–303				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	38	0-7	304–311				
$ \begin{array}{ c c c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		39	0-7	312–319				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	40	0	320-327				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	41	0	328–335				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	42	0-7	336–343				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	43	0-7	344-351				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	44	0-7	352–359	TAG Addross 1			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	45	0-7	360–367		011110		Ŧ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07	46	0-7	368–375	TAG Value 1			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23	47	0-7	376–383		011110		Ŧ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	48	0-7	384-391	TAG Command 1	UINT8	1 to 2	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	49	0-7	392–399	—			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	05	50	0-7	400-407	TAC Address 0			1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	51	0-7	408–415	TAG Address 2	011110		1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	52	0-7	416-423				1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	53	0-7	424-431				±
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07	54	0-7	432-439	TAG Command 2	UINT8	1 to 2	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	55	0-7	440-447	—			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	56	0-7	448-455	Coolor tomporatura	QINT46	-100.00 to	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	57	0-7	456-463			+100.00 [°C]	TO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	58	0-7	464–471	Cooler flow rate	QINT46	-100.00 to	100
30 61 0-7 488-495 Real energy actual value UINT16 0 to 0505.0 10 31 62 0-7 496-503 Power actual value UINT16 0 to 6553.5 100	29	59	0-7	472-479			+100.00 [l/min]	TOO
30 61 0-7 488-495 Reat energy actual value 01N116 [kJ] 10 31 62 0-7 496-503 Power actual value UINT16 0 to 6553.5 100	70	60	0-7	480–487	Pool opprovide the vehice		0 to 6553.5	10
31 Power actual value UINT16 0000000 100	30	61	0-7	488–495	Treat energy actual value			TO
	31	62	0-7	496–503	Power actual value		0 to 6553.5	100
63 0-7 504-511 [[KWV]		63	0-7	504-511	rower actual value		[kW]	100

		Addres	SS				
F	Relati	ve	Absolute		> e		
WORD	вүте	BIT	BIT	Signal	Activity/ data type	Range	Factor
32	64	0-7	512-519	Gas real rate	UINT16	0.0 to +100.0	10
0-	65	0-7	520-527		0111120	[l/min]	10
33	66	0-7	528-535	Resistance	UINT 16	0.0 to +400	10
	67	0-7	536-543			[mOhm]	
34	68	0-7	544-551	Inductance	UINT 16	0.0 to +250	10
	69	0-7	552-559			[microhenries]	
35	70	0-7	560-567	Real value - Welding voltage	UINT16	0.0 to 327.67	100
	71	0-7	568–575			[V]	
36	72	0-7	576-583	Real value - Welding current	UINT16	0.0 to 3276.7	10
	73	0-7	584-591			[A]	
37	74	0-7	592-599	Real value - Wire feed speed	UINT16	-327.68 to	10
	75	0-7	600–607			+327.67 [m/min]	
38	76	0-7	608–615	·			
	77	0-7	616-623				
39	78	0-7	624-631	- <u> </u>			
	79	0-7	632-639				
40	80	0-7	640-647	· —			
	81	0-7	648-655				
41	82	0-7	656-663	· —			
	83	0-7	664-671				
42	84	0-7					
	85	0-7	680-687				
43	86	0-7	688-695	- <u></u>			
	87 88	0-7	696-703				
44	89	0-7	704-711				
	90	0-7	712-719				
45	90 91	0-7 0-7	720–727 728–735	-			
	91 92	0-7	736-743				
46	92 93	0-7	730-743	-			
	93 94	0-7	752-759				
47	94 95	0-7	760-767	-			
	90	0-7	100-101				

Assignment of
Sensor Statuses
1-4SignalDescriptionSensor status 1OPT/i WF R wire end (4,100,869)Sensor status 2OPT/i WF R wire drum (4,100,879)Sensor status 3OPT/i WF R ring sensor (4,100,878)Sensor status 4Wire buffer set CMT TPS/i (4,001,763)

Value range for Function status

Bit 1	Bit o	Description
0	0	inactive
0	1	idle
1	0	finished
1	1	Error

Value range for function status

Value range Safety status

Bit 1	Bit o	Description
0	0	Reserve
0	1	Hold
1	0	Stop
1	1	Not installed / active

Value Range for Process Bit	Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Description
FIDCESS BIL	0	0	0	0	0	No internal parameter selection or process
	0	0	0	0	1	MIG/MAG pulse synergic
	0	0	0	1	0	MIG/MAG standard synergic
	0	0	0	1	1	MIG/MAG PMC
	0	0	1	0	0	MIG/MAG LSC
	0	0	1	0	1	MIG/MAG standard manual
	0	0	1	1	0	Electrode
	0	0	1	1	1	TIG
	0	1	0	0	0	СМТ
	0	1	0	0	1	ConstantWire

TAG Table

TAG number	Description	Reading/writing	Range	Unit	Factor
1	Cooling unit mode	Reading & writing	See Value range for TAG number 1 (Cool- ing unit mode) on page 49	-	1
2	Delay time flow sensor	Reading & writing	5 to 25	S	1
3	Touch sensing sensitivity	Reading & writing	0 to 10	-	1
4	Ignition timeout	Reading & writing	less than 5 = off; 5 to 100	mm	1
10	Arc break monitoring	Reading & writing	See Value range for TAG number 11 (Arc break monitor- ing) on page 49	-	1
11	Arc break monitoring	Reading & writing	0 to 2.00	S	100
15	Wire stick contact tip	Reading & writing	1/2 1 = ignore	-	1
			2 = error		
16	Wire stick filter time	Reading & writing	0.5 to 5.0	S	10
20	Wire stick workpiece	Reading & writing	1/2 1 = ignore 2 = error	-	1
25	Wire end ring sensor	Reading & writing	1/2/3 1 = ignore 2 = after seam end 3 = error	-	1
26	Wire end drum sensor	Reading & writing	1/2/3 1 = ignore 2 = after seam end 3 = error	-	1
27	Wire end wirespool	Reading & writing	1/2/3 1 = ignore 2 = after seam end 3 = error	-	1
30	Lower gasflow limit	Reading & writing	0.5 to 30.0	l/min	10

TAG number	Description	Reading/writing	Range	Unit	Factor
31	Maximum time of gas devi- ation	Reading & writing	0.1 to 10.0	S	10
32	Sensor gas factor	Reading & writing	less than 0.90 = auto; 0.90 to 20.00	-	100
35	Language	Reading & writing	See Value range for TAG number 35 (Language) on page 49	-	
36	Unit (metric/imperial)	Reading & writing	See Value range for TAG number 36 (Unit - metric/ imperial) on page 50	-	
37	Welding standard (AWS/EU)	Reading & writing	See Value range for TAG number 37 (Welding stand- ard - AWS/EU) on page 50	-	
40	DHCP	Reading & writing	1/2 1 = off 2 = on	-	1
105	Gas preflow	Reading & writing	0 to 9.9	S	10
106	Gas postflow	Reading & writing	0 to 60.0	S	10
107	Gas factor	Reading & writing	auto/ 0.90 to 20.00	-	100
110	S2T - Slope 1	Reading & writing	0 to 9.9	S	10
111	S2T - Slope 2	Reading & writing	0 to 9.9	S	10
112	Start Arclength correction	Reading & writing	-10.0 to +10.0	-	10
113	End Arclength correction	Reading & writing	-10.0 to +10.0	-	10
114	SFI Hotstart	Reading & writing	less than 0.01 = off; 0.01 to 2.00	-	100
120	SP Delta wire feed	Reading & writing	0.1 to 6.0	m/min	10
121	SP Frequency	Reading & writing	0.5 to 10.0	Hz	10
122	SP Dutycycle	Reading & writing	10 to 90	%	1
123	SP Arc length correction high	Reading & writing	-10.0 to +10.0	-	10
124	SP Arc length correction low	Reading & writing	-10.0 to +10.0	-	10
130	Inching value	Reading & writing	0.5 to 25.0 (vD- max Process- line)	m/min	100
205	Hour meter power on [0]	Read only	0 to 100000	h	1
206	Hour meter power on [1]	Read only	0 to 100000	h	1

TAG number	Description	Reading/writing	Range	Unit	Factor
210	Hour meter arc on time [0]	Read only	0 to 100000	h	1
211	Hour meter arc on time [1]	Read only	0 to 100000	h	1
215	Wire speed minimum	Read only	0 to 100.0	m/min	10
216	Wire speed maximum	Read only	0 to 100.0	m/min	10

Value range for TAG number 1	Value	Description
(Cooling unit	0	-
mode)	1	есо
	2	auto
	3	on
	4	off

Value range for TAG number 11	Value	Description
(Arc break mon-	0	-
itoring)	1	Ignore
	2	Error

Value range for TAG number 35 (Language)

Value	Description
1	English
2	German
3	Japanese
4	Chinese
5	Spanish
6	French
7	Czech
8	Hungarian
9	Italian
10	Norwegian
11	Polish
12	Portuguese
13	Slovakian
14	Turkish
15	Russian
16	Swedish

Value	Description
17	Estonian
18	Finnish
19	Lithuanian
20	Latvian
21	Dutch
22	Slovenian
23	Romanian
24	Croatian
25	Ukrainian
26	Korean
27	Icelandic
28	Vietnamese
29	Thai
30	Indonesian
31	Serbian
32	Hindi
33	Tamil
34	Danish
35	Bulgarian

Value range for TAG number 36	Value	Description
(Unit - metric/	0	-
imperial)	1	Imperial
	2	Metric

Value range for TAG number 37	Value	Description
(Welding stand-	0	-
ard - AWS/EU)	1	AWS
	2	EN

Input and output signals Weldcom V2.0

Data types	 The following data types are used: UINT16 (Unsigned Integer) Whole number in the range from 0 to 65535 SINT16 (Signed Integer) Whole number in the range from -32768 to 32767
	Conversion examples: - for a positive value (SINT16) e.g. desired wire speed x factor 12.3 m/min x 100 = 1230 _{dec} = 04CE _{hex}
	 for a negative value (SINT16) e.g. arc correction x factor -6.4 x 10 = -64_{dec} = FFCO_{hex}

Input Signals From robot to power source

Applicable to firmware V3.5.0 and higher

HEX address	Signal		Туре	Unit/Area	Factor
F000	Control Fla	g Group 1			
	Bits 0 to 7	Process active timeout	Byte	ms	10
	Bits 8–15	Reserved			
F001	Control Fla	g Group 2			
	Bit o	Welding start	Boolean		
	Bit 1	Robot ready	Boolean		
	Bit 2	Source error reset	Boolean		
	Bit 3	Gas on	Boolean		
	Bit 4	Wire inching	Boolean		
	Bit 5	Wire retract	Boolean		
	Bit 6	Torch blow out	Boolean		
	Bit 7	Welding simulation	Boolean		
	Bit 8	Touch sensing	Boolean		
	Bit 9	Booster manual	Boolean		
	Bit 10	SFI ON	Boolean		
	Bit 11	Synchro pulse on	Boolean		
	Bit 12	WireBrake	Boolean		
	Bit 13	Torch XChange	Boolean		
	Bit 14	Teach mode	Boolean		
	Bit 15	Reserved			

HEX address Signal			Туре	Unit/Area	Factor
F002	Control Fla	g Group 3			
	Bit o	Process line selection Bit O	Boolean	See Value range Process line se-	
	Bit 1	Process line selection Bit 1	Boolean	lection on page 54	
	Bit 2	TWIN mode Bit 0	Boolean	See Value Range for TWIN	
	Bit 3	TWIN mode Bit 1	Boolean	Mode on page 54	
	Bits 4 to 9	Reserved			
	Bit 10	Active heat control	Boolean		
	Bit 11	Wire sense start	Boolean		
	Bit 12	Wire sense break	Boolean		
	Bits 13 to 15	Reserved	Boolean		
F003	Control Fla	g Group 4			
	Bit o	Documentation mode	Boolean	See Value Range for Docu- mentation mode on page 55	
	Bits 1–15	Reserved			
F004	Control Fla	g Group 5			
	Bits 0–15	Reserved			
F005	Control Fla	g Group 6			
	Bits 0–15	Reserved			
F006	Control Fla	g Group 7			
	Bit o	CMT Cycle Step on	Boolean		
	Bits 1–7	Reserved			
	Bit 8	Enable CMT Cycle Step	Boolean		
	Bit 9	Enable PMC Mix	Boolean		
	Bit 10	Disable Start-End-Parameter	Boolean		

HEX address	Signal		Туре	Unit/Area	Factor
F007	Control Fla	g Group 8			
	Bit 0 ExtInput1 => OPT_Output 1		Boolean		
	Bit 1	ExtInput2 => OPT_Output 2	Boolean		
	Bit 2	ExtInput3 => OPT_Output 3	Boolean		
	Bit 3	ExtInput4 => OPT_Output 4	Boolean		
	Bit 4	ExtInput5 => OPT_Output 5	Boolean		
	Bit 5	ExtInput6 => OPT_Output 6	Boolean		
	Bit 6	ExtInput7 => OPT_Output 7	Boolean		
	Bit 7	ExtInput8 => OPT_Output 8	Boolean		
	Bits 8–15	Reserved			
F008	Working mo	ode			
	Bit o	Working Mode Bit O			
	Bit 1	Working Mode Bit 1		See Value range	
	Bit 2	Working Mode Bit 2		for Working mode on page	
	Bit 3	Working Mode Bit 3		55	
	Bit 4	Working Mode Bit 4		_	
	Bits 5–13	Reserved			
	Bit 14	Command value selection	Boolean	See Value Range for Com- mand value se- lection on page 55	
	Bit 15	Reserved			
F009	Job numbe	r	UINT16	0 to 1000	
FooA	Program nu	mber (xml-file)	UINT16	0 to 65535	
FooB	Feeder com	imand value	SINT16	-327.68 to 327.67 m/min	100
FooC	Arc length	correction	SINT16	-10 to +10	10
FooD	Puls/Dynan	nik correction	SINT16	-10 to +10	10
Fooe	Wire retrac	t	SINT16	0 to +10	10
FooF	Welding spe	ed	UINT16	0 to 65535 (0 to 6553.5 m/min)	10
F010	Penetratior	stabilizer	SINT16	0 to +10	10
F011	Arc length	stabilizer	UINT16	0 to +10	10
F012	Reserved				
F013	Reserved				
F014	Reserved				
F015	Reserved				
F016	Reserved				

HEX address	Signal	Туре	Unit/Area	Factor
F017	Reserved			
F018	Reserved			
F019	Reserved			
F01A	Wire forward / backward length	UINT16	OFF/1 to 65535 mm	1
F01B	Wire sense edge detection	UINT16	OFF/0.5 to 20.0 mm	10
F01C	Reserved			
F01D	Seam number	UINT16	0 to 65535	1
F01E	Process-Mix High power time correction	SINT16	-10 to 10	10
F01F	Process-Mix Low power time correction	SINT16	-10 to 10	10
F020	Low power time correction CMT	SINT16	1 to 100	1
F021	Process-Mix Low power correction	SINT16	-10 to 10	10
F022	CMT Cycle Step Cycles (Spot size)	SINT16	0 to 2000	1
F023	CMT Cycle Step Interval break time	SINT16	0.01 to 2.00	100
F024	CMT Cycle Step Interval cycles	SINT16	Permanent (=0)/1 to 2000	1
F025- F031	Reserved			

Value range Process line selection

Bit 1	Bit o	Description
0	0	Process line 1 (default)
0	1	Process line 2
1	0	Process line 3
1	1	Reserved

Value range for process line selection

Value Range for TWIN Mode

Bit o	Description
0	TWIN Single mode
1	TWIN Lead mode
0	TWIN Trail mode
1	Reserved
	0 1 0

Value range for TWIN mode

Value Range for Documentation	Bit o	Description	1
mode	0	Seam number of power source (internal)	
	1	Seam number of robot	1

Value range for documentation mode

Value range for Working mode

Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Description	
0	0	0	0	0	Internal welding parameter selection	
0	0	0	0	1	Special 2-step mode characteristics	
0	0	0	1	0	Job mode	
0	1	0	0	0	2-step mode characteristics	
1	0	0	0	1	Stop cooling unit	
0	1	0	0	1	2-Step manual mode	

Value range for operating mode

Value Range for Command value selection

Bit 14	Description
0	Wirefeeder set value
1	Welding current set value

Value range for set value

Output Signals From power source to robot

Applicable to firmware V3.5.0 and higher	

HEX address	Signal		Туре	Unit/Area	Factor
F100	Status Flag	Group 1			
	Bits 0–15	Reserved			
F101	Status Flag	Group 2			
	Bit o	Heartbeat Powersource	Boolean	1 Hz	
	Bit 1	Power source ready	Boolean		
	Bit 2	Arc stable	Boolean		
	Bit 3	Current flow	Boolean		
	Bit 4	Main current signal	Boolean		
	Bit 5	Torch collision protection	Boolean		
	Bit 6	Reserved			
	Bit 7	Reserved			
	Bit 8	Touch signal	Boolean		
	Bit 9	Torchbody connected	Boolean		
	Bit 10	Command value out of range	Boolean		
	Bit 11	Correction out of range	Boolean		
	Bit 12	Process active	Boolean		
	Bit 13	RobotMotionRelease	Boolean		
	Bit 14	Wire stick workpiece	Boolean		
	Bit 15	Reserved			
F102	Status Flag	Group 3			
	Bit o	Welding Mode Bit 0	Boolean		
	Bit 1	Welding Mode Bit 1	Boolean	See Value range for welding pro-	
	Bit 2	Welding Mode Bit 2	Boolean	cess and pro-	
	Bit 3	Welding Mode Bit 3	Boolean	cess image on page 58	
	Bit 4	Welding Mode Bit 4	Boolean		
	Bits 5–7	Reserved			
	Bit 8	Parameter selection internally	Boolean		
	Bit 9	Characteristic number valid	Boolean		
	Bits 10– 13	Reserved			
	Bit 14	Process image Bit 0	Boolean	See Value range	
	Bit 15	Process image Bit 1	Boolean	for welding pro- cess and pro- cess image on page 58	

HEX address	Signal		Туре	Unit/Area	Factor
F103	Status Flag	Group 4			
	Bit o	Penetration stabilizier	Boolean		
	Bit 1	Arclength stabilizier	Boolean		
	Bits 2–13	Reserved			
	Bit 14	Short circuit contact tip	Boolean		
	Bit 15	Gas nozzle touched	Boolean		
F104	Status Flag	Group 5			
	Bit o	Sensor status 1 High	Boolean	See Assignment	
	Bit 1	Sensor status 2 High	Boolean	of Sensor Statuses 1–4 on	
	Bit 2	Sensor status 3 High	Boolean	page 59	
	Bit 4	Sensor status 4 High	Boolean		
	Bits 4–10	Reserved			
	Bit 11	Safety status Bit O	Boolean	See Value range	
	Bit 12	Safety status Bit 1	Boolean	Safety status on page 59	
	Bit 13	Reserved			
	Bit 14	Notification	Boolean		
	Bit 15	System not ready	Boolean		
F105	Status Flag	Group 6			
	Bit o	Limit Signal	Boolean		
	Bits 1–7	Reserved			
	Bit 8	Reserved			
	Bit 9	TWIN synchronization active	Boolean		
	Bit 10	Main supply status	Boolean		
	Bits 11– 13	Reserved			
	Bit 14	Warning	Boolean		
	Bit 15	Reserved			
F106	Status Flag	Group 7			
	Bits 0–15	Reserved	Boolean		
F107	Status Flag	Group 8			
	Bit o	ExtOutput1 <= OPT_Input1	Boolean		
	Bit 1	ExtOutput2 <= OPT_Input2	Boolean		
	Bit 2	ExtOutput3 <= OPT_Input3	Boolean		
	Bit 3	ExtOutput4 <= OPT_Input4	Boolean		
	Bit 4	ExtOutput5 <= OPT_Input5	Boolean		
	Bit 5	ExtOutput6 <= OPT_Input6	Boolean		
	Bit 6	ExtOutput7 <= OPT_Input7	Boolean		
	Bit 7	ExtOutput8 <= OPT_Input8	Boolean		
	Bits 8–15	Reserved	Boolean		

HEX				_
address	Signal	Туре	Unit/Area	Factor
F108	Main error number	UINT16	0 to 65535	
F109	Warning number	UINT16	0 to 65535	1
F10A	Welding voltage actual value	UINT16	0.0 to 327.67 volts	100
F10B	Welding current actual value	UINT16	0.0 to 3276.7 amperes	10
F10C	Motor current actual value M1	SINT16	-327.68 to 327.67 amperes	100
F10D	Motor current actual value M2	SINT16	-327.68 to 327.67 amperes	100
F10E	Motor current actual value M3	SINT16	-327.68 to 327.67 amperes	100
F10F	Reserved			
F110	Wire speed actual value	SINT16	-327.68 to 327.67 m/min	100
F111	Seam tracking actual value	UINT16	0 to 6.5535	10000
F112	Real energy actual value	UINT16	0 to 6553.5 kilo- joules	10
F113	Wire position	SINT16	-327.68 to 327.67 mm	100
F114- F131	Reserved			

Value range for welding process and process image

Bit 4	Bit 3	Bit 2	Bit 1	Bit o	Description
0	0	0	0	0	Internal mode selection
0	0	0	0	1	MIG/MAG pulsed synergic
0	0	0	1	0	MIG/MAG standard synergic
0	0	0	1	1	MIG/MAG PMC
0	0	1	0	0	MIG/MAG LSC
0	0	1	0	1	MIG/MAG standard manual
0	0	1	1	0	Electrode
0	0	1	1	1	TIG
0	1	0	0	0	СМТ

Value range for welding process

Bit 15	Bit 14	Description
0	0	Standard image (Weldcom V2.0)
1	0	Retrofit image (Weldcom TPS series)

Value range for process image

Assignment of Sensor Statuses	Signal	Description
1-4	Sensor status 1	OPT/i WF R wire end (4,100,869)
	Sensor status 2	OPT/i WF R wire drum (4,100,879)
	Sensor status 3	OPT/i WF R ring sensor (4,100,878)
	Sensor status 4	Wire buffer set CMT TPS/i (4,001,763)

Value range Safety status

Bit 1	Bit o	Description
0	0	Reserve
0	1	Hold
1	0	Stop
1	1	Not installed / active

TAG table

- To read the following TAGs, use the mode function 03dec (03hex) see section 103dec (67hex)
 Read Holding Register Float from page 76
- To edit the following TAGs, use the mode function 06dec (06hex) see section 104_{dec} (68_{hex})
 Write Single Register Float from page 77

HEX address	Signal	Access	Туре	Range	Unit	Step size
E064	Gas preflow [Gpr]	Reading & writing	FLOAT	0.0 to 9.9	S	0.1
E065	Gas postflow [Gpo]	Reading & writing	FLOAT	0.0 to 9.9	S	0.1
F10B	Error number	Reading	FLOAT	0 to 65,535		1
E062	Min. feeder value	Reading	FLOAT	0.0 to 100.0	m/min	0.1
E063	Max. feeder value	Reading	FLOAT	0.0 to 100.0	m/min	0.1
E0A3	Inching speed [Fdi]	Reading & writing	FLOAT	0.5 to vD- max	m/min	0.1
E032	SynchroPulse DeltaWireFeed	Reading & writing	FLOAT	0.1 to 6.0	m/min	10
E031	SynchroPulse Frequency	Reading & writing	FLOAT	0.5 to 10.0	Hz	10
E033	SynchroPulse DutyCycle	Reading & writing	FLOAT	10 to 90	%	1

HEX address	Signal	Access	Туре	Range	Unit	Step size
E034	SynchroPulse ArcLength Correction High	Reading & writing	FLOAT	-10.0 to 10.0		10
E035	SynchroPulse ArcLength Correction Low	Reading & writing	FLOAT	-10.0 to 10.0		10
E06A	Starting current [I-S]	Reading & writing	FLOAT	0.0 to 200.0	%	1
E06B	Slope 1	Reading & writing	FLOAT	0.0 to 9.9	S	10
E06C	Slope 2	Reading & writing	FLOAT	0.0 to 9.9	S	10
E06D	End current [I-E]	Reading & writing	FLOAT	0.0 to 200.0	%	1
E056	Starting Current Time [t- S]	Reading & writing	FLOAT	0.0 to 10.0	S	10
E057	End Current Time [t-e]	Reading & writing	FLOAT	0.0 to 10.0	S	10
E02E	SFI HotStart	Reading & writing	FLOAT	0.01 to 2.00	S	100
E06F	Language	Reading & writing	FLOAT	See the following table		ng table
EOA6	Hourmeter Current flow	Reading	FLOAT	0.0 to 1,000,00 0	h	0.1
E0A7	Hourmeter Power on	Reading	FLOAT	0.0 to 1,000,00 0	h	0.1
ΕΟΑΑ	Power value	Reading	FLOAT	0.0 to 1,000,00 0	kW	0.1
EOAB	Real energy value	Reading	FLOAT	0.0 to 1,000,00 0	kJ	0.1
EOBB	Coolertemperature	Reading	FLOAT	-100 to 200	°C	0.1
EoBC	Coolerflow	Reading	FLOAT	-100 to 100	l/min	0.1

Table Lang	Table Language				
Value	Language				
8E+34	English				
9E+34	German				
58e34	Japanese				
10e34	Chinese				
23e34	Spanish				

Table Lang	guage
Value	Language
24e34	French
25e34	Czech
26e34	Hungarian
27e34	Italian
28e34	Norwegian
29e34	Polish
30e34	Portuguese
31e34	Slovak
32e34	Turkish
33e34	Russian
34e34	Swedish
35e34	Estonian
36e34	Finnish
39e34	Lithuanian
40e34	Latvian
41e34	Dutch
42e34	Slovenian
43e34	Romanian
44e34	Croatian
59e34	Ukrainian
61e34	Korean
66e34	Icelandic
67e34	Vietnamese
70e34	Thai
71e34	Indonesian
75e34	Serbian
76e34	Hindi
130e34	Tamil
151e34	Danish
156e34	Bulgarian

Input and output signals - retrofit image Weldcom TPS series

Input signals

From robot to power source

Applicable to firmware V1.9.0 and higher

HEX address	Signal		Туре	Range / Unit	Factor
F000	Control Fla	g Group 1			
	Bits 0 to 7	Process active timeout	Byte	[ms]	10
	Bits 8 to 15	Reserved			
F001	Control Fla	g Group 2			
	Bit O	Welding start	Boolean		
	Bit 1	Robot ready	Boolean		
	Bit 2	Source error reset	Boolean		
	Bit 3	Gas test	Boolean		
	Bit 4	Wire inching	Boolean		
	Bit 5	Wire retract	Boolean		
	Bit 6	Torch blow out	Boolean		
	Bit 7	Welding simulation	Boolean		
	Bit 8	Touch sensing	Boolean		
	Bit 9	Reserved			
	Bit 10	SFI on	Boolean		
	Bit 11	Synchro pulse on	Boolean		
	Bits 12 to 13	Reserved			
	Bit 14	Power full range	Boolean		
	Bit 15	Reserved			
F002	Control Fla	g Group 3			
	Bits 0 to 15	Reserved			
F003	Control Flag Group 4				
	Bits 0 to 15	Reserved			
F004	Control Fla	g Group 5			
	Bits 0 to 15	Reserved			
F005	Control Fla	g Group 6			
	Bits 0 to 15	Reserved			

HEX address	Signal		Туре	Range / Unit	Factor
F006	Control Fl	ag Group 7			
	Bits 0 to 15	Reserved			
F007	Control Flag Group 8				
	Bits 0 to Reserved				
F008	Operating	mode			
	Bit o	Operating mode 0	Boolean		
	Bit 1	Operating mode 1	Boolean	See table Value	
	Bit 2	Operating mode 2	Boolean	 Range for Oper- ating Mode on 	
	Bit 3	Operating mode 3	Boolean	page 64	
	Bits 4 to 15	Reserved	Boolean		
F009	Job numbe	er	Byte	0 to 255	
FooA	Program n	umber	Byte	0 to 127	
FooB	Power		Word	0 to 65,535 (0 to 100%)	
FooC	Arc length correction		Word	0 to 65,535 (-10 to +10%)	
FooD	Pulse-/dyr	namic correction	Byte	0 to 255 (-5 to +5%)	
FOOE	Reserved				
FooF	Reserved				
F010	Reserved				
F011	Reserved				
F012	Reserved				
F013	Reserved				
F014	Reserved				
F015	Reserved				
F016	Reserved				
F017	Reserved				
F018	Reserved				
F019	Reserved				
F01A	Reserved				
F01B	Reserved				
F01C	Reserved				
F01D	Reserved				
F01E	Reserved				

Value Range for Operating Mode

Bit 4-15	Bit 3	Bit 2	Bit 1	Bit o	Description
-	0	0	0	0	MIG standard
-	0	0	0	1	MIG pulse
-	0	0	1	0	Job mode
-	0	0	1	1	Internal parameter selection/special 2-step mode
-	0	1	0	0	Synergic operation/special 2-step mode
-	0	1	0	1	Synergic operation/special 2-step mode
-	0	1	1	0	MIG standard manual
-	0	1	1	1	Synergic operation/special 2-step mode
-	1	0	0	0	MIGLSC
-	1	0	0	1	MIG PMC

Output signals From power source to robot Applicable to firmware V1.9.0 and higher

HEX address	Signal		Туре	Range / Unit	Factor
F100	Status Flag Group 1				
	Bits 0 to 15	Reserved	Boolean		
F101	Status Flag	Group 2			
	Bit o	Communication ready	Boolean		
	Bit 1	Power source ready	Boolean		
	Bit 2	Arc stable	Boolean		
	Bit 3	Process active	Boolean		
	Bit 4	Main current signal	Boolean		
	Bit 5	Torch collision protection	Boolean		
	Bit 6	Wire stick control	Boolean		
	Bit 7	Wire available	Boolean		
	Bit 8	Short circuit timeout	Boolean		
	Bit 9	Power out of Range	Boolean		
	Bits 10 to 11	-	Boolean		
	Bit 12	Limit signal High	Boolean		
	Bits 13 to 15	-	Boolean		
F102	Status Flag Group 3				
	Bits 0 to 13	Reserved			
	Bit 14	Process image Bit 0	Boolean		
	Bit 15	Process image Bit 1	Boolean		
F103	Status Flag Group 4				
	Bits 0 to 15	Reserved			
F104	Status Flag Group 5				
	Bits 0 to 15	Reserved			
F105	Status Flag	Group 6			
	Bits 0 to 15	Reserved			
F106	Status Flag	Group 7			
	Bits 0 to 15	Reserved			

HEX address	Signal		Туре	Range / Unit	Factor
F107	Status Flag	g Group 8			
	Bits 0 to 15	Reserved			
F108	Main error	number	Word		
F109	Reserved				
F10A	Welding voltage actual value		Word	0 to 65,535 (0 to 100 V)	
F10B	Welding current actual value		Word	0 to 65,535 (0 to 1000 A)	
F10C	Motor current actual value		Byte	0 to 255 (0 to 5 A)	
F10D	Reserved				
F10E	Reserved				
F10F	Reserved				
F110	Wire speed actual value		Word	0 to vDmax	100
F111	Reserved				
F112	Reserved				

TAG Table

- To read the following TAGs, use the mode function $O_3 dec (O_3 hex)$ see section $O_3 dec (O_3 hex)$ _
- **Read Holding Register** from page **70** To edit the following TAGs, use the mode function 06dec (06hex) or 16_{dec} (10_{hex}) see section -06_{dec} (06_{hex}) Write Single Register from page 71 / section 16_{dec} (10_{hex}) Write Multiple Register from page 73

HEX address	Description	Reading / writing	Unit	Туре	Step size
E011	Gas preflow [Gpr]	Reading / writing	S	Word	0.001
E012	Gas postflow [Gpo]	Reading / writing	S	Word	0.001
E000	Error number	Read only			1
E072	Min. feeder value	Read only	m/min	Word	0.01
E073	Max. feeder value	Read only	m/min	Word	0.01
E013	Inching speed [Fdi]	Reading / writing	m/min	Word	0.01
E015	Power offset [dFd]	Reading / writing	m/min	Word	0.01
E016	SynchroPulse Frequency	Reading / writing	Hz	Word	0.1
E01D	Starting current [I-S]	Reading / writing	%	Word	0.1
E01F	Slope 1 + Slope 2	Reading / writing	S	Word	0.001
E020	End current [I-E]	Reading / writing	%	Word	0.1

HEX address	Description	Reading / writing	Unit	Туре	Step size
E01E	Starting Current Time [t-S]	Reading / writing	S	Word	OFF = 0.0
E021	End Current Time [t-e]	Reading / writing	S	Word	and 0.1
E007	Arc length correction 2 (Al2)	Reading / writing	%	Word	0.1

Protocol De- scription	action. The function tel	onstructed by the client that initiates the MODBUS trans- ls the server which action is to be performed. The MOD- ol defines the format of a client-initiated request.					
	are in the range of 1 2	of a MODBUS data unit is coded in one byte. Valid codes 255 decimal (the range 128-255 is reserved for exception erver receives a message from a client, the function code ich action to perform.					
	function codes. When n the message contains a action defined by the fu	be performed, subfunction codes are added to some nessages are sent to servers by a client, the data field in dditional information that the server uses to perform the unction code. This can include elements such as discrete resses, the quantity to be handled, or the number of actu- within the field.					
	With certain types of request, there might not be a data field (length: zero). In this case, the server does not require any additional information because the action is specified by the function code alone.						
	If a MODBUS ADU is correctly received without any errors occurring in connec- tion with the requested MODBUS function, the requested data will be included i the data field when a server responds to a client. If an error does occur in con- nection with the requested MODBUS function, the field will contain an exception code that the server application can use to determine what action to perform next.						
		n read the ON/OFF statuses of a group of discrete inputs d/write the data contents of a group of registers.					
	When sending a response to the client, the server uses the function code field either to indicate that the response is normal (free of errors) or that an error ha occurred (this kind of response is called an "exception response"). In the case of a normal response, the server simply echoes the original function code.						
Data Coding	For addresses and data elements, MODBUS uses a big-endian format. When a number larger than a single byte is transmitted, this means that the most significant byte is sent first.						
	Register Size	Value					
	16 bits, 1234 _{hex}	${\rm 12}_{\rm hex}$ is sent as the first byte and then ${\rm 34}_{\rm hex}$					

Application DataThis section describes the encapsulation method used for a MODBUS request or
response when it is transmitted over a MODBUS TCP network.

MPAP header Function code

bata

Description of MPAP	neader:				
Transaction Identifier Used to allocate the tr Identifier of the reque	ansaction. The MODBUS server copies the Transaction				
	ction pairing. The MODBUS server copies the transaction uest into the response.				
Length:	2 bytes				
Description:	For identifying a MODBUS request/response transac- tion				
Client:	Initialized by the client				
Server:	Copied back by the server from the request received				
Protocol Identifier This is used for multip tified by the value 0.	lexing within the system. The MODBUS protocol is iden-				
Length:	2 bytes				
Description:	0 = Modbus protocol				
Client:	Initialized by the client				
Server:	Copied back by the server from the request received				
	ecify the number of bytes in the field to follow, including ction code, and data field.				
Length:	2 bytes				
Description:	Number of bytes to follow				
Client:	Initialized by the client				
Server:	-				
Unit Identifier This field is used for routing within the system. It is usually used for communic- ation with a serially connected MODBUS- or MODBUS+ slave where commu- nication takes place via a gateway between an Ethernet network and a serial MODBUS line. The field value is set in the request by the MODBUS client and must be replicated exactly in the response from the server.					
Length:	1 byte				
Description:	n: For identifying a remote slave that is connected via a serial line or other type of bus.				
Client:	Initialized by the client				

All MODBUS/TCP ADUs are sent via TCP on registered port 502.

Modbus Functions

03 dec (03 hex)	This code is used to read the contents of a contiguous block of holding registers
Read Holding	in a remote device. The request PDU determines the starting register address
Register	and the number of registers.
-	The registers are addressed in the PDU starting at zero. This means registers
	numbered 1-16 will be addressed using 0-15.

The register data in the response message is packed as two bytes per register, with the binary contents precisely aligned/justified within each byte. Within the individual registers, the first byte contains the high-order bits and the second byte the low-order bits.

Request					
Function code	1 byte	03 _{hex}			
Start address	2 bytes	0000 _{hex} to FFFF _{hex}			
Number of registers	2 bytes	1 to 125 (7D _{hex})			

Response					
Function code	1 byte	03 _{hex}			
Number of bytes	2 bytes	2 x N*			
Register value	N* x 2 bytes	-			
N* = Number of registers					

Errors		
Error code	1 byte	83 _{hex}
Exception code	1 byte	01 or 02 or 03 or 04

Example Example of a read request for register F009 (job number).					
Request		Response			
Field name	Hex	Field name	Hex		
Transaction Identifier Hi	00	Transaction Identifier Hi	00		
Transaction Identifier Lo	01	Transaction Identifier Lo	01		
Protocol Identifier Hi	00	Protocol Identifier Hi	00		
Protocol Identifier Lo	00	Protocol Identifier Lo	00		
Length Hi	00	Length Hi	00		
Length Lo	06	Length Lo	05		
Unit Identifier	00	Unit Identifier	00		
Function code	03	Function code	03		
Starting Address Hi	Fo	Byte Count	02		
Starting Address Lo	F9	Register value Hi (108)	02		
No. of Registers Hi	00	Register value Lo (108)	37		

Example Example of a read request for register F	-009 (job number).
Request	Response

Request		Response	
Field name	Hex	Field name	Hex
No. of Registers Lo	01		

The contents of register F009 (job number) are displayed in the form of the two-byte values 237_{hex} or $567_{dec}.$

06_{dec} (06_{hex}) Write Single Register

This function code is used to write a single holding register in a remote device. The request PDU specifies the address of the register to be written. Registers are addressed starting at zero. This means that the register that has been numbered as 1 will be addressed using 0.

The normal response is an echo of the request, which is returned after the register contents are written.

Request		
Function code	1 byte	06 _{hex}
Register address	2 bytes	0000 _{hex} to FFFF _{hex}
Register value	2 bytes	0000 _{hex} or FFFF _{hex}

Response		
Function code	1 byte	06 _{hex}
Register address	2 bytes	0000 _{hex} to FFFF _{hex}
Register value	2 bytes	0000 _{hex} or FFFF _{hex}

Errors		
Error code	1 byte	86 _{hex}
Exception code	1 byte	01 or 02 or 03 or 04

Example Example request for writing the value 237_{hex} (567_{dec}) to register F009 (job number).

Request	Response		
Field name	Hex	Field name	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	00	Protocol Identifier Lo	00
Length Hi	00	Length Hi	00
Length Lo	06	Length Lo	06
Unit Identifier	00	Unit Identifier	00
Function code	06	Function code	06
Register Address Hi	Fo	Register Address Hi	Fo

Example Example request for writing number).	the value	237 _{hex} (567 _{dec}) to register F	009 (job
Request	Request Response		
Field name	Hex	Field name	Hex
Register Address Lo	09	Register Address Lo	09
Register Value Hi	02	Register Value Hi	02
Register Value Lo	37	Register Value Lo	37

16_{dec} (10_{hex}) Write Multiple Register

This function code is used to write a block of contiguous registers in a remote device. The requested written values are specified in the request data field. Data is packed as two bytes per register. The normal response returns the function code, the starting address, and the number of registers written.

Request		
Function code	1 byte	10 _{hex}
Starting address	2 bytes	0000 _{hex} to FFFF _{hex}
Number of registers	2 bytes	0001 _{hex} or 0078 _{hex}
Number of bytes	1 byte	2 x N*
Register values	N* x 2 bytes	Value
N* = number of registe	ers to be writte	n

Response		
Function code	1 byte	10 _{hex}
Starting address	2 bytes	0000 _{hex} to FFFF _{hex}
Number of registers	2 bytes	1 to 123 (7B _{hex})

Errors		
Error code	1 byte	90 _{hex}
Exception code	1 byte	01 or 02 or 03 or 04

Example Example request for writing	two regist	ters (FooB _{hex} – FooC _{hex}).	
Request		Response	
Field name	Hex	Field name	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	00	Protocol Identifier Lo	00
Length Hi	00	Length Hi	00
Length Lo	11	Length Lo	11
Unit Identifier	00	Unit Identifier	00
Function code	10	Function code	10
Starting Address Hi	Fo	Starting Address Hi	Fo
Starting Address Lo	οВ	Starting Address Lo	оВ
Quantity of Registers Hi	00	Quantity of Registers Hi	00
Quantity of Registers Lo	02	Quantity of Registers Lo	02
Byte Count	04		
Register Value Hi	04		
Register Value Lo	CE		

Example Example request for writing two registers (F00B _{hex} – F00C _{hex}).			
Request		Response	
Field name	Hex	Field name	Hex
Register Value Hi	FF		
Register Value Lo	Со		

23_{dec} (17_{hex}) Read/Write Multiple Register

This function code performs a combination of one read operation and one write operation in a single MODBUS transaction. The write operation is performed before the read operation.

Holding registers are addressed starting at zero. This means that holding registers 1-16 will be addressed in the PDU using 0-15.

The request PDU specifies:

- The starting address and number of holding registers to be read
- The starting address, number of holding registers, and data for the write operation.

The byte count field specifies the number of bytes to follow in the write data field.

The normal response contains the data from the group of registers read. The byte count field specifies the number of bytes to follow in the read data field.

Request		
Function code	1 byte	17 _{hex}
Read starting ad- dress	2 bytes	0000 _{hex} to FFFF _{hex}
Number of registers to read	2 bytes	0001 _{hex} to approx. 0076 _{hex}
Write starting ad- dress	2 bytes	0000 _{hex} to FFFF _{hex}
Number of registers to write	2 bytes	0001 _{hex} to approx. 0076 _{hex}
Write number of bytes	1 byte	2 x N*
Write register values	N* x 2 bytes	
N* = number of registers to be written		

Response			
Function code	1 byte	17 _{hex}	
Number of bytes	1 byte	2 x N*	
Write register values N* x 2 bytes			
N* = number of registers to be read			

Errors		
Error code	1 byte	97 _{hex}
Exception code	1 byte	01 or 02 or 03 or 04

Example Example request for reading 2 registers and writing 2 registers.				
Request Response				
Field name	Hex	Field name	Hex	
Transaction Identifier Hi	00	Transaction Identifier Hi	00	

Example Example request for reading 2 registers and writing 2 registers.			
Request		Response	
Field name	Hex	Field name	Hex
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	00	Protocol Identifier Lo	00
Length Hi	00	Length Hi	00
Length Lo	11	Length Lo	7
Unit Identifier	00	Unit Identifier	00
Function code	17	Function code	17
Read Starting Address Hi	F1	Byte Count	2
Read Starting Address Lo	оA	Read Registers Value Hi	04
Quantity to Read Hi	00	Read Registers Value Lo	08
Quantity to Read Lo	2	Read Registers Value Hi	оA
Write Starting Address Hi	Fo	Read Registers Value Lo	C8
Write Starting Address Lo	оВ		
Quantity to Write Hi	00		
Quantity to Write Lo	04		
Write Byte Count	2		
Write Registers Value Hi	04		
Write Registers Value Lo	CE		
Write Registers Value Hi	FF		
Write Registers Value Lo	Со		
Transaction Identifier Hi	00		

103_{dec} (67_{hex}) Read Holding Register Float

This function is used to read the contents of a contiguous block of registers in the TAG tables contained in this document. The register uses floating-point format (32 bits). The request PDU determines the starting register address and the number of registers.

The registers are addressed in the PDU starting at zero. This means registers numbered 1-16 will be addressed using 0-15.

The register data in the response message is packed as two bytes per register, with the binary contents precisely aligned/justified within each byte. Within the individual registers, the first byte contains the high-order bits and the second byte the low-order bits.

Requirement		
Function code	1 byte	xx _{hex}
Starting address	2 bytes	xxxx _{hex} to xxxx _{hex}
Number of registers	2 bytes	1 to 125 (7D _{hex})

Response			
Function code	1 byte	03 _{hex}	
Number of bytes	2 bytes	2 x N*	
Register value N* x 2 bytes -			
N* = number of registers			

Error		
Error code	1 bytes	83 _{hex}
Exception code	1 byte	01 or 02 or 03 or 04

Example Example read request for register E064 _{hex} (gas pre-flow):			
Requirement		Response	
Field Name	Hex	Field Name	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	00	Protocol Identifier Lo	00
Length Hi	00	Length Hi	00
Length Lo	06	Length Lo	05
Unit Identifier	00	Unit Identifier	00
Function code	67	Function code	67
Starting Address Hi	EO	Byte Count	02
Starting Address Lo	64	Register Value High Hi	3F
No. of Registers Hi	00	Register Value High Lo	Со
No. of Registers Lo	01	Register Value Low Hi	00
		Register Value Low Lo	00

The contents of register E064 $_{\rm hex}$ (gas pre-flow) are displayed in the form of the two-byte values 3FC00000 or 1.5 $_{\rm dec}$.

104_{dec} (68_{hex}) Write Single Register Float

This function is used to edit registers in the TAG tables contained in this document. The register uses floating-point format (32 bits). The request PDU specifies the address of the register to be written. Registers are addressed starting at zero. This means that the register that has been numbered as 1 will be addressed using 0.

The normal response is an echo of the request, which is returned after the register contents are written.

Requirement		
Function code	1 byte	68 _{hex}
Register address	2 bytes	E000 _{hex} to Exxx _{hex}
Register value	2 bytes	0000 _{hex} or FFFFFFF _{hex}

Response		
Function code	1 byte	68 _{hex}
Register address	2 bytes	E000 _{hex} to Exxx _{hex}
Register value	2 bytes	0000 _{hex} or FFFFFFF _{hex}

Error		
Error code	1 bytes	E8 _{hex}
Exception code	1 byte	01 or 02 or 03

Example Example request for writing the value ${\tt 3FC00000}_{hex}$ (1.5 $_{dec}{\tt)}$ to register E064 $_{hex}$ (gas pre-flow):

Requirement		Response	
Field Name	Hex	Field Name	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	00	Protocol Identifier Lo	00
Length Hi	00	Length Hi	00
Length Lo	08	Length Lo	08
Unit Identifier	00	Unit Identifier	00
Function code	68	Function code	68
Register Address Hi	EO	Register Address Hi	Eo
Register Address Lo	64	Register Address Lo	64
Register Value High Hi	ЗF	Register Value Hi	45
Register Value High Lo	Со	Register Value Lo	09
Register Value Low Hi	00	Register Value Hi	80
Register Value Low Lo	00	Register Value Lo	00

Fronius International GmbH

Froniusstraße 1 4643 Pettenbach Austria contact@fronius.com www.fronius.com

Under <u>www.fronius.com/contact</u> you will find the addresses of all Fronius Sales & Service Partners and locations.