Operating Instructions

RI FB/i CRC 1.0
 RI MOD/i CC Modbus TCP-2P

Table of contents

General 4
Safety 4
Device Concept 4
Block diagram 5
Scope of supply 5
Required Tools and Materials 5
Installation Requirements 5
Connections and Indicators 6
Connections on the Robot Interface 6
LEDs on Robot Interface PCB 6
LEDs for Power Supply Diagnosis 7
LEDs for Network Connection Diagnosis. 8
Connections and indicators on RJ 45 module 8
Technical data 10
Environmental Conditions 10
Robot Interface Technical Data 10
Data Transfer Properties 10
Configuration parameters 10
Configuration of robot interface 12
General 12
Setting the process image 12
Configuring the Robot Interface 12
Installing the Robot Interface 13
Safety 13
Preparation 13
Routing the Data Cable 14
Installing the Robot Interface 15
Final Tasks 15
Installing the Bus Module 16
Safety 16
Installing the Bus Module 16
Input and output signals 17
Data types 17
Input signals 17
Value range Process line selection 21
Value Range for TWIN Mode 21
Value Range for Documentation mode 21
Value range for Working mode 21
Value Range for Command value selection 21
Value range for Motor Type 22
Output signals 22
Value range for welding process and process image. 25
Assignment of Sensor Statuses 1-4 25
Value range Safety status 26
TAG table 26
Cooling unit mode. 28
Language 28
Unit 29
Welding standard 29
Modbus - General Information 30
Protocol Description 30
Data Coding 30
Application Data Unit (ADU) 30
Modbus Functions 32
03 (03) Read Holding Register 32
06 (06) Write Single Register 33
16 (10) Write Multiple Register 34
23 (17) Read/Write Multiple Register 35
103 (67) Read Holding Register Float 37
104 (68) Write Single Register Float. 38

General

Safety

4. WARNING!

Danger from incorrect operation and work that is not carried out properly.
This can result in serious personal injury and damage to property.

- All the work and functions described in this document must only be carried out by technically trained and qualified personnel.
- Read and understand this document in full.
- Read and understand all safety rules and user documentation for this equipment and all system components.

4. WARNING!

Danger from electrical current.

This can result in serious personal injury and damage to property.

- Before starting work, switch off all the devices and components involved and disconnect them from the grid.
- Secure all devices and components involved so they cannot be switched back on.

4. WARNING!

Danger from unplanned signal transmission.

This can result in serious personal injury and damage to property.

- Do not transfer safety signals via the interface.

Device Concept

The robot interface serves as an interface between the power source and standardized bus modules supporting a wide range of communication protocols. Fronius may factory-fit the robot interface in the power source but it can also be retrofitted by appropriately trained and qualified personnel.

(1) Robot control system
(2) SpeedNet data cable
(3) Robot interface

(4)	Power source
(5)	Cooling unit
(6)	Interconnecting hosepack
(7)	Wirefeeder
(8)	Robot

Block diagram

Scope of supply

- Screwdriver TX8
- Screwdriver TX20
- Screwdriver TX25
- Diagonal cutting pliers

Required Tools and Materials

Installation Requirements

The robot interface may only be installed in the designated opening on the rear of the power source.

(1)	RI FB/i CRC 1.0
(2)	Data cable
	4-pin
(3)	Cable ties
(4)	This document (not pictured)

Connections and Indicators

Connections on the Robot Interface

(1) Power supply connection 2-pin
(2) SpeedNet data cableconnection 4-pin
(3) Bus module connection

LEDs on Robot

Interface PCB

(1)	ETH1 LED	Green	For diagnosing the network connec- tion.
(2)	ETH2 LED	Orange	For details, see section below titled "LEDs for Network Connection Dia- gnosis"

$\left.$| (3) | LED 3 | Green | No function |
| :--- | :--- | :--- | :--- |
| (4) | LED 4 | Green | |
| (5) | LED 5 | Flashes at 4 Hz = No SpeedNet
 connection
 Flashes at 20 Hz = Establishing
 SpeedNet connection
 Flashes at 1 Hz = SpeedNet con-
 nection established | |
| (6) | LED 6 | Red | Lights up when an internal error oc-
 curs.
 Remedy: Restart the robot interface.
 If this does not resolve the issue, in-
 form the service team. |
| (7) | +3V3 LED | Green | For diagnosing the power supply.
 For details, see section below titled
 "LEDs for Power Supply Diagnosis" |
| (8) | +24V LED | Green | Green | | Digital output 2. LED lights up when |
| :--- |
| active | \right\rvert\,

LEDs for Power Supply Diagnosis	LED	Indicat- or	Meaning	Cause

LEDs for Network Connection Diagnosis

| LED | Indicat-
 or | Meaning | Cause |
| :--- | :--- | :--- | :--- | | ETH1 |
| :--- |

Connections and indicators on RJ 45 module

(1)	TX+
(2)	TX-
(3)	RX+
(6)	RX-
(4)	Not normally used; to ensure signal completeness, these pins must be interconnected and, after passing through a filter circuit, must terminate at the ground conductor (PE).
(5)	Link/Activity LED 2
(7)	Module status LED
(10)	

(11)	RJ-45 Ethernet connection 2
(12)	RJ-45 Ethernet connection 1
(13)	Link/Activity LED 1
(14)	Network status LED

Network Status LED:	
Status	Meaning
Off	No IP address or exception state
Lights up green	At least one Modbus message received
Flashes green	Waiting for first Modbus message
Lights up red	IP address conflict, serious error
Flashes red	Connection timeout. No Modbus message was received within the period defined for the "Process active timeout"

Module Status LED:	
Status	Meaning
Off	No supply voltage
Lights up green	Normal operation
Lights up red	Major error (exception state, serious fault, etc.)
Flashes red	Minor error
Alternates between red and green	Firmware update in progress

Link/Activity LED:	
Status	Meaning
Off	No connection, no activity
Lights up green	Connection established (100 Mbit/s)
Flickers green	Activity (100 Mbit/s)
Lights up yellow	Connection established (10 Mbit/s)
Flickers yellow	Activity (10 Mbit/s)

Technical data

Environmental Conditions

. CAUTION!

A risk is posed by prohibited environmental conditions.
This can result in severe damage to equipment.

- Only store and operate the device under the following environmental conditions.

Temperature range of ambient air:

- During operation: $-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
- During transport and storage: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$

Relative humidity:

- Up to 50% at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
- Up to 90% at $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$

Ambient air: free of dust, acids, corrosive gases or substances, etc.
Altitude above sea level: up to 2000 m (6500 ft)

Robot Interface Technical Data

Power supply	Internal (24 V)
Degree of protection	IP 23

Data Transfer

 Properties
RJ-45 Connection

Transmission technology:
Ethernet

Medium (4 $\times 2$ twisted-pair copper cable):

Category 5 (100 Mbit/s) or higher
Transmission speed:
$10 \mathrm{Mbit} / \mathrm{s}$ or $100 \mathrm{Mbit} / \mathrm{s}$

Bus connection:

Ethernet RJ-45

Configuration parameters

In some robot control systems, it may be necessary to state the configuration
parameters described here so that the bus module can communicate with the
robot.
Parameter
Vendor Name Value Product Code Fronius International GmbH Major / Minor Revi- sion V1.00

In some robot control systems, it may be necessary to state the configuration parameters described here so that the bus module can communicate with the robot.	
Parameter	Value
Vendor URL	www.fronius.com
Product Name	fronius-fb-crc-1-O-modbus-tcp
Model Name	Fronius Modbus TCP
User Application Name	Fronius welding controller for the TPS/i series with CRC 1.0

Configuration of robot interface

General

The DIP switch on the robot interface is used to configure:

- The process image (standard image, retrofit image)
- The IP address

Default setting for process image:
Positions 7 and 8 of DIP switch set to OFF (1) = standard image $=$ Weldcom V2.0

Default setting for IP address = 192.168.255.210:

- Positions 6,5,3, and 1 of DIP switch set to OFF (1)
- Positions 2 and 4 of DIP switch set to ON (2)

Setting the process image

Dip switch								
$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	Configuration
OFF	OFF	-	-	-	-	-	-	Standard image (CRC 1.O)
OFF	ON	-	-	-	-	-	-	Not used
ON	OFF	-	-	-	-	-	-	Not used
ON	ON	-	-	-	-	-	-	Not used

The process image defines the volume of data transferred and the system compatibility.

Configuring the
 Robot Interface

NOTE!

Risk due to invalid DIP switch settings.

This may result in malfunctions.

- Whenever changes are made to the DIP switch settings, the interface must be restarted. This is the only way for the changes to take effect.
- Restart the interface = interrupting and restoring the power supply or executing the relevant function on the website of the power source (SmartManager).

Installing the Robot Interface

Safety

4. WARNING!

Electrical current hazard.

This can result in serious injuries or death.

- Before starting work, switch off all the devices and components involved and disconnect them from the grid.
- Secure all the devices and components involved to prevent unintentional restarting.
- After opening the device, use a suitable measuring instrument to check that electrically charged components (such as capacitors) have been discharged.

4. WARNING!

Electrical current hazard caused by an inadequate ground conductor connection.
This can result in severe personal injury and damage to property.

- Always use the original housing screws in the original quantity.

Preparation

Routing the Data

 Cable

Installing the Robot Interface

Final Tasks

Installing the Bus Module

Safety

. WARNING!

Danger from electrical current.

Serious injuries or death may result.

- Before starting work, switch off all devices and components involved, and disconnect them from the grid.
- Secure all devices and components involved so that they cannot be switched back on.

. WARNING!

Danger from electrical current due to inadequate ground conductor connection. Serious personal injury and property damage may result.

- Always use the original housing screws in the quantity initially supplied.

Installing the Bus Module

Input and output signals

Data types
The following data types are used:

- UINT16 (Unsigned Integer)

Whole number in the range from 0 to 65535

- SINT16 (Signed Integer)

Whole number in the range from -32768 to 32767

Conversion examples:

- for a positive value (SINT16)
e.g. desired wire speed x factor
$12.3 \mathrm{~m} / \mathrm{min} \times 100=1230_{\text {dec }}=04 \mathrm{CE}_{\text {hex }}$
- for a negative value (SINT16)
e.g. arc correction x factor
$-6.4 \times 10=-64 \mathrm{dec}=\mathrm{FFCO}_{\text {hex }}$

Input signals From robot to power source
Applicable to firmware V4.1.0 and higher

HEX address	Signal	Data type Activity	Unit/range	Factor	
Fooo	Control Flag Group 1				
	Bits 0 to 7	Process active timeout	Byte	ms	10
	Bits 8 to 15	Reserved			

| HEX
 address | Signal | | | Data type
 Activity | Unit/range |
| :---: | :--- | :--- | :--- | :--- | :--- | Factor

HEX address	Signal		Data type Activity	Unit/range	Factor
Foo3	Control Flag Group 4				
	Bit 0	Documentation mode	High	See Value Range for Documentation mode on page 21	
	Bits 1 to 4	Reserved			
	Bit 5	Motor type Bit 0	High	See Value range for Motor Type on page 22	
	Bit 6	Motor type Bit 1	High		
	Bit 7	Motor type Bit 2	High		
	Bits 8 to 15	Reserved			
F004	Control Flag Group 5				
	Bits 0 to 15	Reserved			
F005	Control Flag Group 6				
	Bits 0 to 15	Reserved			
Foo6	Control Flag Group 7				
	Bits 0 to 9	Reserved			
	Bit 10	Enable Start-End-Parameter	High		
	Bit 11	Enable components setup	High		
	Bit 12	Enable Unit / Standard	High		
	Bits 13 to 15	Reserved			
F007	Control Flag Group 8				
	Bit 0	ExtInput1 => OPT_Output 1	High		
	Bit 1	ExtInput2 => OPT_Output 2	High		
	Bit 2	ExtInput3 => OPT_Output 3	High		
	Bit 3	ExtInput4 => OPT_Output 4	High		
	Bit 4	ExtInput5 => OPT_Output 5	High		
	Bit 5	ExtInput6 => OPT_Output 6	High		
	Bit 6	ExtInput7 => OPT_Output 7	High		
	Bit 7	ExtInput8 => OPT_Output 8	High		
	Bits 8 to 15	Reserved			

HEX address	Signal		Data type Activity	Unit/range	Factor
Foo8	Working mode				
	Bit 0	Working Mode Bit O		See Value range for Working mode on page 21	
	Bit 1	Working Mode Bit 1			
	Bit 2	Working Mode Bit 2			
	Bit 3	Working Mode Bit 3			
	Bit 4	Working Mode Bit 4			
	Bits 5 to 13	Reserved			
	Bit 14	Command value selection Bit O	High	See Value Range for Command value selection on page 21	
	Bit 15	Reserved			
Foo9	Bits o to 15	Job number	UINT16	O to 1000	
FooA	Bits 0 to 15	Characteristic number (xmlfile)	UINT16	o to 65,535	
Foob	Bits 0 to 15	Feeder command value	SINT16	$\begin{gathered} -327.68 \text { to } \\ 327.67 \\ \mathrm{~m} / \mathrm{min} \end{gathered}$	100
Fooc	Bits 0 to 15	Arc length correction	SINT16	-10 to +10	10
FOOD	Bit 0-15	Pulse/Dynamic correction	SINT16	-10 to +10	10
FooE	Bits 0 to 15	Wire retract	SINT16	O to +10	10
FooF	Bits 0 to 15	Welding speed	UINT16	$\begin{gathered} \text { o to } 65,535 \\ \text { (o to } 6553.5 \\ \mathrm{~m} / \mathrm{min} \text {) } \end{gathered}$	10
F010	Bit 0-15	Penetration stabilizer	SINT16	o to +10	10
F011	Bit 0-15	Arc length stabilizer	UINT16	0 to +10	10
$\begin{aligned} & \text { Fo12- } \\ & \text { F019 } \end{aligned}$	Bit 0-15	Reserved			
Fo1A	Bits 0 to 15	Wire forward / backward length	UINT16	OFF/1 to $65,535 \mathrm{~mm}$	1
F01B	Bits O to 15	Wire sense edge detection	UINT16	OFF/0.5 to 20.0 mm	10
Fo1C	Bit 0-15	Reserved			
F01D	Bit 0-15	Seam number	UINT16	o to 65,535	1
$\begin{aligned} & \text { Fo1E- } \\ & \text { Fo31 } \end{aligned}$	Bit 0-15	Reserved			

Value range Process line selection

Bit 1	Bit 0	Description
0	0	Process line 1 (default)
0	1	Process line 2
1	0	Process line 3
1	1	Reserved

Value range for process line selection

Value Range for TWIN Mode

Bit 1	Bit 0	Description
0	0	TWIN Single mode
0	1	TWIN Lead mode
1	0	TWIN Trail mode
1	1	Reserved

Value range for TWIN mode

Value Range for Documentation mode

Bit o	Description
0	Seam number of power source (internal)
1	Seam number of robot

Value range for documentation mode

Value range for Working mode

Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
0	0	0	0	0	Internal welding parameter selection
0	0	0	0	1	Special 2-step mode characteristics
0	0	0	1	0	Job mode
0	1	0	0	0	2-step mode characteristics
0	1	0	0	1	2-Step manual mode
1	0	0	0	1	Stop cooling pump

Value range for operating mode

Value Range for Command value Colection sel $\mathbf{B i t}$ $\mathbf{1 4}$	Description	
	0	Wirefeeder set value
	1	Welding current set value

Value range for set value

Value range for Motor Type

Bit 2	Bit 1	Bit 0	Description
0	0	0	Fronius wirefeeder
0	0	1	M500
0	1	0	P-6ooZ
0	1	1	Reserved
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

Output signals From power source to robot

Applicable to firmware V4.1.0 and higher

HEX address	Signal		Data type Activity	Unit/range	Factor
F100	Status Flag Group 1				
	Bits 0 to 7	Reserved			
F101	Status Flag Group 2				
	Bit 0	Heartbeat Powersource	Tppgle	0.5 Hz	
	Bit 1	Power source ready	High		
	Bit 2	Arc stable / Touch signal	High		
	Bit 3	Current flow signal	High		
	Bit 4	Main current signal	High		
	Bit 5	Collision protection	Low	Low = Collision	
	Bits 6 to 7	Reserved			
	Bit 8	Touch signal	High		
	Bit 9	Torchbody connected	High		
	Bit 10	Command value out of range	High		
	Bit 11	Correction out of range	High		
	Bit 12	Process active	High		
	Bit 13	Robot Motion Release	High		
	Bit 14	Wire stick workpiece	High		
	Bit 15	Reserved			

HEX address	Signal		Data type Activity	Unit/range	Factor
F102	Status Flag Group 3				
	Bit 0	Welding Mode Bit O	High	See Tab.: Value range for welding process on page 25	
	Bit 1	Welding Mode Bit 1	High		
	Bit 2	Welding Mode Bit 2	High		
	Bit 3	Welding Mode Bit 3	High		
	Bit 4	Welding Mode Bit 4	High		
	Bits 5 to 7	Reserved			
	Bit 8	Parameter selection internally	High		
	Bit 9	Characteristic number valid	High		
	Bit 10	Reserved			
	Bit 11	Process run	High		
	Bits 12 to 13	Reserved			
	Bit 14	Process image Bit 0	High	See Tab.: Value range for process image on page 25	
	Bit 15	Process image Bit 1	High		
F103	Status Flag Group 4				
	Bit 0	Penetration stabilizier	High		
	Bit 1	Arclength stabilizier	High		
	Bits 2 to 4	Reserved			
	Bit 5	Motor type Bit O	High	See Value range	
	Bit 6	Motor type Bit 1	High	for Motor Type on page 22	
	Bit 7	Motor type Bit 2	High		
	Bits 8 to 13	Reserved			
	Bit 14	Short circuit contact tip	High		
	Bit 15	Gas nozzle touched	High		
F104	Status Flag Group 5				
	Bit 0	Sensor status 1	High	See Assignment of Sensor Statuses 1-4 on page 25	
	Bit 1	Sensor status 2	High		
	Bit 2	Sensor status 3	High		
	Bit 4	Sensor status 4	High		
	Bits 4 to 10	Reserved			
	Bit 11	Safety status Bit 0	High	See Value range Safety status on page 26	
	Bit 12	Safety status Bit 1	High		
	Bit 13	Reserved			
	Bit 14	Notification	High		
	Bit 15	System not ready	High		

| HEX
 address | Signal | | | Data type
 Activity | Unit/range |
| :--- | :--- | :--- | :--- | :--- | :--- | Factor

HEX address	Signal		Data type Activity	Unit/range	Factor
F112	Bits 0 to 15	Real energy actual value	UINT16	o to 6553.5 kilojoules	10
F113	Bits o to 15	Wire position	SINT16	$\begin{aligned} & -327.68 \text { to } \\ & 327.67 \mathrm{~mm} \end{aligned}$	100
$\begin{gathered} \text { F114- } \\ \text { F11F } \end{gathered}$	Bit 0-15	Reserved			
F120	Bit 0-15	External feeder command	SINT16	$\begin{gathered} -327.68 \text { to } \\ 327.67 \\ \mathrm{~m} / \mathrm{min} \end{gathered}$	100
F121	Bit 0-15	External feeder slope value	UINT16	o to 6553.5 $\mathrm{m} / \mathrm{min} / \mathrm{sec}$	10
$\begin{aligned} & \text { F122- } \\ & \text { F126 } \end{aligned}$	Bit 0-15	Reserved			

Value range for welding process and process image

Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description
0	0	0	0	0	Internal mode selection
0	0	0	0	1	MIG/MAG pulsed synergic
0	0	0	1	0	MIG/MAG standard synergic
0	0	0	1	1	MIG/MAG PMC
0	0	1	0	0	MIG/MAG LSC
0	0	1	0	1	MIG/MAG standard manual
0	0	1	1	0	Electrode
0	0	1	1	1	TIG
0	1	0	0	0	CMT

Value range for welding process

Bit 15	Bit 14	Description
0	0	Standard image (CRC 1.0)

Value range for process image

Assignment of Sensor Statuses 1-4

Signal	Description
Sensor status 1	OPT/i WF R wire end $(4,100,869)$
Sensor status 2	OPT/i WF R wire drum $(4,100,879)$
Sensor status 3	OPT/i WF R ring sensor $(4,100,878)$
Sensor status 4	Wire buffer set CMT TPS/i $(4,001,763)$

Value range Safety status

Bit 1	Bit 0	Description
0	0	Reserve
0	1	Hold
1	0	Stop
1	1	Not installed / active

TAG table

- To read the following TAGs, use the mode function O3dec (o3hex) - see section $0 \mathbf{O}_{\mathrm{dec}}\left(\mathbf{0} \mathbf{3}_{\mathrm{hex}}\right)$

Read Holding Register from page 32

- To edit the following TAGs, use the mode function 06dec (06hex) - see section $0 \mathbf{6}_{\mathrm{dec}}$ (06 $\mathbf{h e x}$) Write Single Register from page 33

HEX address	Signal	Access	Type	Range	Unit	Step size
$\begin{gathered} \text { Dooo / } \\ \text { E064 } \end{gathered}$	Gas preflow [Gpr]	Reading \& writing	FLOAT	0.0 to 9.9	S	0.1
Do01 / E065	Gas postflow [Gpo]	Reading \& writing	FLOAT	0.0 to 9.9	s	0.1
$\begin{gathered} \text { Doo2 / } \\ \text { EOA3 } \end{gathered}$	Inching speed [Fdi]	Reading \& writing	FLOAT	$\begin{aligned} & 0.5 \text { to vD- } \\ & \text { max } \end{aligned}$	$\mathrm{m} / \mathrm{min}$	0.1
$\begin{aligned} & \text { Doo3 / } \\ & \text { E032 } \end{aligned}$	SynchroPulse DeltaWireFeed	Reading \& writing	FLOAT	0.1 to 6.0	$\mathrm{m} / \mathrm{min}$	10
$\begin{gathered} \text { Doo4 / } \\ \text { E031 } \end{gathered}$	SynchroPulse Frequency	Reading \& writing	FLOAT	$\begin{gathered} 0.5 \text { to } \\ 10.0 \end{gathered}$	Hz	10
$\begin{gathered} \text { Doo5 / } \\ \text { E033 } \end{gathered}$	SynchroPulse DutyCycle	Reading \& writing	FLOAT	10 to 90	\%	1
$\begin{gathered} \text { Doo6 / } \\ \text { E034 } \end{gathered}$	SynchroPulse ArcLength Correction High	Reading \& writing	FLOAT	$\begin{aligned} & \text {-10.0 to } \\ & 10.0 \end{aligned}$		10
$\begin{aligned} & \text { Doo7 / } \\ & \text { E035 } \end{aligned}$	SynchroPulse ArcLength Correction Low	Reading \& writing	FLOAT	$\begin{aligned} & -10.0 \text { to } \\ & 10.0 \end{aligned}$		10
$\begin{gathered} \text { Doo8 / } \\ \text { E06A } \end{gathered}$	Starting current [I-S]	Reading \& writing	FLOAT	$\begin{aligned} & 0.0 \text { to } \\ & 200.0 \end{aligned}$	\%	1
$\begin{gathered} \text { Doo9 / } \\ \text { E011 } \end{gathered}$	Start Arclength Correction	Reading \& writing	FLOAT	$\begin{gathered} -10.0 \text { to } \\ 10.0 \end{gathered}$		0.1
$\begin{gathered} \text { DooA / } \\ \text { E056 } \end{gathered}$	Starting Current Time [t$\mathrm{S}]$	Reading \& writing	FLOAT	$\begin{gathered} 0.0 \text { to } \\ 10.0 \end{gathered}$	s	0.1
$\begin{gathered} \text { DooB / } \\ \text { Eo6B } \end{gathered}$	Slope 1	Reading \& writing	FLOAT	0.0 to 9.9	s	0.1
$\begin{aligned} & \text { DooC / } \\ & \text { Eo6C } \end{aligned}$	Slope 2	Reading \& writing	FLOAT	0.0 to 9.9	s	0.1

HEX address	Signal	Access	Type	Range	Unit	Step size
$\begin{aligned} & \text { DooD / } \\ & \text { E06D } \end{aligned}$	End current [I-E]	Reading \& writing	FLOAT	$\begin{aligned} & 0.0 \text { to } \\ & 200.0 \end{aligned}$	\%	1
DooE / E012	End arc length correction	Reading \& writing	FLOAT	$\begin{gathered} -10.0 \text { to } \\ 10.0 \end{gathered}$		0.1
DooF / E057	End Current Time [t-e]	Reading \& writing	FLOAT	$\begin{gathered} 0.0 \text { to } \\ 10.0 \end{gathered}$	s	0.1
Do10 / E02E	SFI HotStart	Reading \& writing	FLOAT	$\begin{gathered} 0.01 \text { to } \\ 2.00 \end{gathered}$	s	0.01
Do11/ EoBF	Ignition time out	Reading \& writing	FLOAT	5 to 100	mm	1
$\begin{aligned} & \text { Do12 / } \\ & \text { Eo9E } \end{aligned}$	Cooling unit mode	Reading \& writing	FLOAT	See table Cooling unit mode on page 28		
D013	Cooler filter time	Reading \& writing	FLOAT	5 to 25	s	5
D014	Cooler flow warning level	Reading \& writing	FLOAT	$\begin{gathered} 0.75 \text { to } \\ 0.95 \end{gathered}$	1/min	0.01
D015	Touch sensitivity	Reading \& writing	FLOAT	0 to 10		1
Do16 / E06F	Language	Reading \& writing	FLOAT	See table Language on page 28		
D017	Units	Reading \& writing	FLOAT	See table Unit on page 29		
D018	Welding standard	Reading \& writing	FLOAT	See table Welding standard on page 29		
$\begin{gathered} \text { D100 / } \\ \text { F10B } \end{gathered}$	Error number	Reading	FLOAT	$\begin{gathered} \text { o to } \\ 65,535 \end{gathered}$		1
$\begin{gathered} \text { D101 / } \\ \text { Eo62 } \end{gathered}$	Min. feeder value	Reading	FLOAT	0.0 to 100.0	$\mathrm{m} / \mathrm{min}$	0.1
$\begin{aligned} & \text { D102 / } \\ & \text { Eo63 } \end{aligned}$	Max. feeder value	Reading	FLOAT	$\begin{aligned} & 0.0 \text { to } \\ & 100.0 \end{aligned}$	$\mathrm{m} / \mathrm{min}$	0.1
$\begin{gathered} \text { D103 / } \\ \text { EoA6 } \end{gathered}$	Hourmeter Current flow	Reading	FLOAT	$\begin{gathered} 0.0 \text { to } \\ \text { 1,000,00 } \\ 0 \end{gathered}$	h	0.1
$\begin{gathered} \mathrm{D} 104 \text { / } \\ \text { EoA7 } \end{gathered}$	Hourmeter Power on	Reading	FLOAT	$\begin{gathered} 0.0 \text { to } \\ 1,000,00 \\ 0 \end{gathered}$	h	0.1
$\begin{aligned} & \text { D105 / } \\ & \text { EoAA } \end{aligned}$	Power value	Reading	FLOAT	$\begin{gathered} 0.1 \text { to } \\ 1,000,00 \\ 0 \end{gathered}$	kW	0.1
$\begin{gathered} \text { D106 / } \\ \text { EoAB } \end{gathered}$	Real energy value	Reading	FLOAT	$\begin{gathered} 0.1 \text { to } \\ \text { 1,000,00 } \\ 0 \end{gathered}$	kJ	0.1
$\begin{gathered} \text { D107 / } \\ \text { EoBB } \end{gathered}$	Coolertemperature	Reading	FLOAT	$\begin{gathered} -100 \text { to } \\ 200 \end{gathered}$	${ }^{\circ} \mathrm{C}$	0.1
$\begin{gathered} \text { D108 / } \\ \text { EoBC } \end{gathered}$	Coolerflow	Reading	FLOAT	$\begin{gathered} -100 \text { bis } \\ 100 \end{gathered}$	l/min	0.01

Cooling unit mode

Value	Description
$20 e 34$	Eco
$13 e 34$	Auto
$11 e 34$	On
$12 e 34$	Off

Language

Value	Description
8 e 34	English
9 e 34	German
58e34	Japanese
$10 e 34$	Chinese
23 e 34	Spanish
24 e 34	French
25 e 34	Czech
26e34	Hungarian
27 e 34	Italian
28 e 34	Norwegian
29 e 34	Polish
30034	Portuguese
31 e 34	Slovak
32 e 34	Turkish
33 e 34	Russian
34 e 34	Swedish
35e34	Estonian
36e34	Finnish
39 e 34	Lithuanian
$40 e 34$	Latvian
41 e 34	Dutch
42 e 34	Slovenian
43 e 34	Romanian
44 e 34	Croatian
59e34	Ukrainian
$61 e 34$	Korean
66e34	Icelandic
67 e 34	Vietnamese
70 e34	Thai
71 e 34	Indonesian
75 e 34	Serbian

Value	Description
$76 e 34$	Hindi
$130 e 34$	Tamil
$151 e 34$	Danish
$156 e 34$	Bulgarian

Value	Description
$37 e 34$	Metrisch
$38 e 34$	Imperial

Welding standard

Value	Description
$49 e 34$	AWS
$57 e 34$	CEN

Modbus - General Information

Protocol Description

The MODBUS ADU is constructed by the client that initiates the MODBUS transaction. The function tells the server which action is to be performed. The MODBUS application protocol defines the format of a client-initiated request.

The function code field of a MODBUS data unit is coded in one byte. Valid codes are in the range of 1 ... 255 decimal (the range 128-255 is reserved for exception responses). When the server receives a message from a client, the function code field tells the server which action to perform.

If several actions are to be performed, subfunction codes are added to some function codes. When messages are sent to servers by a client, the data field in the message contains additional information that the server uses to perform the action defined by the function code. This can include elements such as discrete addresses, register addresses, the quantity to be handled, or the number of actual data bytes contained within the field.

With certain types of request, there might not be a data field (length: zero). In this case, the server does not require any additional information because the action is specified by the function code alone.

If a MODBUS ADU is correctly received without any errors occurring in connection with the requested MODBUS function, the requested data will be included in the data field when a server responds to a client. If an error does occur in connection with the requested MODBUS function, the field will contain an exception code that the server application can use to determine what action to perform next.

For instance, a client can read the ON/OFF statuses of a group of discrete inputs or outputs, or it can read/write the data contents of a group of registers.

When sending a response to the client, the server uses the function code field either to indicate that the response is normal (free of errors) or that an error has occurred (this kind of response is called an "exception response"). In the case of a normal response, the server simply echoes the original function code.

Data Coding For addresses and data elements, MODBUS uses a big-endian format. When a number larger than a single byte is transmitted, this means that the most significant byte is sent first.

Register Size	Value
16 bits, 1234 hex	$12_{\text {hex }}$ is sent as the first byte and then 34 hex

Application Data This section describes the encapsulation method used for a MODBUS request or Unit (ADU) response when it is transmitted over a MODBUS TCP network.

MPAP header	Function code	Data

Description of MPAP header:	
Transaction Identifier Used to allocate the transaction. The MODBUS server copies the Transaction Identifier of the request into the response.	
Transaction Identifier This is used for transaction pairing. The MODBUS server copies the transaction identifier from the request into the response.	
Length:	2 bytes
Description:	For identifying a MODBUS request/response transac- tion
Client:	Initialized by the client
Server:	Copied back by the server from the request received
Protocol Identifier This is used for multiplexing within the system. The MODBUS protocol is iden- tified by the value 0.	2 bytes
Length:	o = Modbus protocol
Description:	Initialized by the client
Client:	Copied back by the server from the request received
Server:	Initialized by the client Length This field is used to specify the number of bytes in the field to follow, including the unit identifier, function code, and data field.
Length:	2 bytes
Description:	Number of bytes to follow
Client:	Initialized by the client
Server:	-
Unit Identifier This field is used for routing within the system. It is usually used for communic- ation with a serially connected MODBUS- or MODBUS+ slave where commu- nication takes place via a gateway between an Ethernet network and a serial MODBUS line. The field value is set in the request by the MODBUS client and must be replicated exactly in the response from the server.	
Length:	Description:

All MODBUS/TCP ADUs are sent via TCP on registered port 502.

Modbus Functions

$\mathbf{0 3}_{\text {dec }}\left(0 \mathbf{3}_{\text {hex }}\right)$
Read Holding

This code is used to read the contents of a contiguous block of holding registers in a remote device. The request PDU determines the starting register address and the number of registers.
The registers are addressed in the PDU starting at zero. This means registers numbered 1-16 will be addressed using 0-15.

The register data in the response message is packed as two bytes per register, with the binary contents precisely aligned/justified within each byte. Within the individual registers, the first byte contains the high-order bits and the second byte the low-order bits.

Request		
Function code	1 byte	$03_{\text {hex }}$
Start address	2 bytes	$0000_{\text {hex }}$ to FFFF
hex		
Number of registers	2 bytes	1 to $125\left(7 \mathrm{D}_{\text {hex }}\right)$

Response		
Function code	1 byte	$03_{\text {hex }}$
Number of bytes	2 bytes	$2 \times \mathrm{N}^{*}$
Register value	$\mathrm{N}^{*} \times 2$ bytes	-
$\mathrm{N}^{*}=$ Number of registers		

Errors		
Error code	1 byte	$83_{\text {hex }}$
Exception code	1 byte	01 or O2 or O3 or O4

Example			
Example of a read request for register Foo9 (job number).			
Request		Response	
Field name	Hex	Field name	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	00	Protocol Identifier Lo	00
Length Hi	00	Length Hi	00
Length Lo	06	Length Lo	05
Unit Identifier	00	Unit Identifier	00
Function code	03	Function code	03
Starting Address Hi	Fo	Byte Count	02
Starting Address Lo	F9	Register value Hi (108)	02
No. of Registers Hi	00	Register value Lo (108)	37

| $\|l\|$
 Example
 Example of a read request for register F009 (job number).
 Request
 Field name Hex | Response | |
| :--- | :---: | :--- | :---: |
| No. of Registers Lo name | Hex | |

The contents of register Foog (job number) are displayed in the form of the twobyte values 237 hex or 567 dec.
$\mathbf{0 6}_{\mathrm{dec}}$ ($\mathbf{0 6}_{\text {hex }}$) Write Single Register

This function code is used to write a single holding register in a remote device. The request PDU specifies the address of the register to be written. Registers are addressed starting at zero. This means that the register that has been numbered as 1 will be addressed using 0 .
The normal response is an echo of the request, which is returned after the register contents are written.

Request		
Function code	1 byte	$06_{\text {hex }}$
Register address	2 bytes	${0000 O_{\text {hex }} \text { to FFFF }}_{\text {hex }}$
Register value	2 bytes	$0^{000 O_{\text {hex }} \text { or FFFF }}$ hex

Response		
Function code	1 byte	$06_{\text {hex }}$
Register address	2 bytes	$0^{000 O_{\text {hex }} \text { to FFFF }}$ hex
Register value	2 bytes	$0^{000 O_{\text {hex }} \text { or FFFF }}$ hex

Errors		
Error code	1 byte	$86_{\text {hex }}$
Exception code	1 byte	O1 or O2 or O3 or O4

Example Example request for writing the value $237 \mathrm{hex}\left(567_{\mathrm{dec}}\right)$ to register F009 (job number).			
Request		Response	
Field name	Hex	Field name	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	OO
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	OO
Protocol Identifier Lo	00	Protocol Identifier Lo	OO
Length Hi	OO	Length Hi	OO
Length Lo	06	Length Lo	06
Unit Identifier	00	Unit Identifier	00
Function code	06	Function code	06
Register Address Hi	Fo	Register Address Hi	Fo

Example Example request for writing the value 237hex number). nu7dec) to register Foo9 (job			
Request	Hex	Response	Field name
Field name	09	Register Address Lo	09
Register Address Lo	02	Register Value Hi	02
Register Value Hi	37	Register Value Lo	37
Register Value Lo			

$\mathbf{1 6}_{\mathrm{dec}}$ ($\mathbf{1 0}_{\text {hex }}$) Write Multiple Register

This function code is used to write a block of contiguous registers in a remote device. The requested written values are specified in the request data field. Data is packed as two bytes per register. The normal response returns the function code, the starting address, and the number of registers written.

Request							
Function code	1 byte	$10_{\text {hex }}$					
Starting address	2 bytes	$0000_{\text {hex }}$ to FFFF					
hex			$	$	Number of registers	2 bytes	$0001_{\text {hex }}$ or $0078_{\text {hex }}$
:---	:---	:---					
Number of bytes	1 byte	$2 \times \mathrm{N}^{*}$					
Register values	$\mathrm{N}^{*} \times 2$ bytes	Value					
$\mathrm{N}^{*}=$ number of registers to be written							

Response		
Function code	1 byte	$10_{\text {hex }}$
Starting address	2 bytes	${0000 O_{\text {hex }} \text { to FFFF }}_{\text {hex }}$
Number of registers	2 bytes	1 to $123\left(7 B_{\text {hex }}\right)$

Errors		
Error code	1 byte	$90_{\text {hex }}$
Exception code	1 byte	O1 or O2 or O3 or O4

Example Example request for writing two registers (FooB hex FooC $_{\text {hex }}$).			
Request		Response	
Field name	Hex	Field name	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	00	Protocol Identifier Lo	00
Length Hi	00	Length Hi	00
Length Lo	11	Length Lo	11

Example Example request for writing two registers ($\mathrm{FOOB}_{\text {hex }}-\mathrm{FOOC}_{\text {hex }}$).			
Request		Response	
Field name	Hex	Field name	Hex
Unit Identifier	00	Unit Identifier	00
Function code	10	Function code	10
Starting Address Hi	Fo	Starting Address Hi	Fo
Starting Address Lo	OB	Starting Address Lo	OB
Quantity of Registers Hi	00	Quantity of Registers Hi	00
Quantity of Registers Lo	02	Quantity of Registers Lo	O 2
Byte Count	04		
Register Value Hi	04		
Register Value Lo	CE		
Register Value Hi	FF		
Register Value Lo	Co		

$\mathbf{2 3}_{\text {dec }}$ (17hex)
Read/Write Multiple Register

This function code performs a combination of one read operation and one write operation in a single MODBUS transaction. The write operation is performed before the read operation.
Holding registers are addressed starting at zero. This means that holding registers 1-16 will be addressed in the PDU using 0-15.

The request PDU specifies:

- The starting address and number of holding registers to be read
- The starting address, number of holding registers, and data for the write operation.

The byte count field specifies the number of bytes to follow in the write data field.

The normal response contains the data from the group of registers read. The byte count field specifies the number of bytes to follow in the read data field.

Request		
Function code	1 byte	$17_{\text {hex }}$
Read starting ad- dress	2 bytes	$0000_{\text {hex }}$ to FFFF
hex		
Number of registers to read	2 bytes	$0001_{\text {hex }}$ to approx. $0076_{\text {hex }}$
Write starting ad- dress	2 bytes	$0000_{\text {hex }}$ to FFFF
Numbex to write		
Write number of bytes	1 byte	$2 \times \mathrm{N}^{*}$
Write register values	$\mathrm{N}^{*} \times 2$ bytes	

Request

```
N* = number of registers to be written
```

Response		
Function code	1 byte	17 hex
Number of bytes	1 byte	$2 \times \mathrm{N}^{*}$
Write register values	$\mathrm{N}^{*} \times 2$ bytes	
$\mathrm{N}^{*}=$ number of registers to be read		

Errors		
Error code	1 byte	97 hex
Exception code	1 byte	O1 or O2 or O3 or O4

Example

Example request for reading 2 registers and writing 2 registers.

Request		Response	
Field name	Hex	Field name	Hex
Transaction Identifier Hi	00	Transaction Identifier Hi	00
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	00	Protocol Identifier Hi	00
Protocol Identifier Lo	OO	Protocol Identifier Lo	OO
Length Hi	00	Length Hi	00
Length Lo	11	Length Lo	7
Unit Identifier	OO	Unit Identifier	00
Function code	17	Function code	17
Read Starting Address Hi	F1	Byte Count	2
Read Starting Address Lo	OA	Read Registers Value Hi	04
Quantity to Read Hi	00	Read Registers Value Lo	08
Quantity to Read Lo	2	Read Registers Value Hi	OA
Write Starting Address Hi	Fo	Read Registers Value Lo	C8
Write Starting Address Lo	OB		
Quantity to Write Hi	00		
Quantity to Write Lo	04		
Write Byte Count	2		
Write Registers Value Hi	04		
Write Registers Value Lo	CE		
Write Registers Value Hi	FF		
Write Registers Value Lo	Co		
Transaction Identifier Hi	OO		

$103^{\text {dec }}$ ($67_{\text {hex }}$)
Read Holding
Register Float

This function is used to read the contents of a contiguous block of registers in the TAG tables contained in this document. The register uses floating-point format (32 bits). The request PDU determines the starting register address and the number of registers.
The registers are addressed in the PDU starting at zero. This means registers numbered 1-16 will be addressed using 0-15.

The register data in the response message is packed as two bytes per register, with the binary contents precisely aligned/justified within each byte. Within the individual registers, the first byte contains the high-order bits and the second byte the low-order bits.

Requirement		
Function code	1 byte	$x^{\prime} x_{\text {hex }}$
Starting address	2 bytes	$x x x x_{\text {hex }}$ to $x x x x_{\text {hex }}$
Number of registers	2 bytes	1 to $125\left(7 D_{\text {hex }}\right)$

Response		
Function code	1 byte	$03_{\text {hex }}$
Number of bytes	2 bytes	$2 \times \mathrm{N}^{*}$
Register value	$\mathrm{N}^{*} \times 2$ bytes	-
$\mathrm{N}^{*}=$ number of registers		

Error		
Error code	1 bytes	$83_{\text {hex }}$
Exception code	1 byte	O1 or O2 or O3 or O4

Example Example read request for register E064hex (gas pre-flow):			
Requirement	Hex	Response	
Field Name	Oo	Transaction Identifier Hi	Hex
Transaction Identifier Hi	01	Transaction Identifier Lo	01
Transaction Identifier Lo	00	Protocol Identifier Hi	00
Protocol Identifier Hi	00	Protocol Identifier Lo	00
Protocol Identifier Lo	00	Length Hi	00
Length Hi	06	Length Lo	05
Length Lo	00	Unit Identifier	00
Unit Identifier	67	Function code	67
Function code	Eo	Byte Count	02
Starting Address Hi	64	Register Value High Hi	$3 F$
Starting Address Lo	00	Register Value High Lo	Co
No. of Registers Hi	01	Register Value Low Hi	00
No. of Registers Lo		Register Value Low Lo	00

The contents of register E064hex (gas pre-flow) are displayed in the form of the two-byte values 3 FCOOOOO or 1.5 dec .

104dec (68 hex $)$
Write Single Register Float

This function is used to edit registers in the TAG tables contained in this document. The register uses floating-point format (32 bits). The request PDU specifies the address of the register to be written. Registers are addressed starting at zero. This means that the register that has been numbered as 1 will be addressed using o.
The normal response is an echo of the request, which is returned after the register contents are written.

Requirement		
Function code	1 byte	$68_{\text {hex }}$
Register address	2 bytes	EooO $_{\text {hex }}$ to Exxx
hex		
Register value	2 bytes	$0^{000 O_{\text {hex }} \text { or FFFFFFFF }}$ hex

Response		
Function code	1 byte	$68_{\text {hex }}$
Register address	2 bytes	EooO $_{\text {hex }}$ to Exxx
hex		
Register value	2 bytes	$0^{000 O_{\text {hex }} \text { or FFFFFFFF }}$ hex

Error		
Error code	1 bytes	E8 $_{\text {hex }}$
Exception code	1 byte	O1 or O2 or O3

Example Example request for writing the value $3 \mathrm{FC00000}{ }_{\text {hex }}(1.5 \mathrm{dec})$ to register E064hex (gas pre-flow):			
Requirement		Response	
Field Name	Hex	Field Name	Hex
Transaction Identifier Hi	OO	Transaction Identifier Hi	OO
Transaction Identifier Lo	01	Transaction Identifier Lo	01
Protocol Identifier Hi	OO	Protocol Identifier Hi	OO
Protocol Identifier Lo	OO	Protocol Identifier Lo	OO
Length Hi	OO	Length Hi	OO
Length Lo	08	Length Lo	08
Unit Identifier	00	Unit Identifier	00
Function code	68	Function code	68
Register Address Hi	Eo	Register Address Hi	Eo
Register Address Lo	64	Register Address Lo	64
Register Value High Hi	3F	Register Value Hi	45
Register Value High Lo	Co	Register Value Lo	09
Register Value Low Hi	OO	Register Value Hi	80

Example Example request for writing the value 3FC00000 hex E064hex (1.5 (gec) to register			
Requirement		Response	
Field Name	Hex	Field Name	Hex
Register Value Low Lo	00	Register Value Lo	00

SPARE PARTS ONLINE

Fronius International GmbH

Froniusstraße 1
4643 Pettenbach
Austria
contact@fronius.com
www.fronius.com

At www.fronius.com/contact you will find the contact details of all Fronius subsidiaries and Sales \& Service Partners.

