/ Battery Charging Systems / Welding Technology / Solar Electronics

i Operating Instructi
Fronius Solar API1 V0 perating Instructions

pd
N System monitoring

42,0410,2011 002-06082013

Contents

1 Introduction

2 General Considerations
2.1 OutputFormats
22 DataTypes
2.2.1 Numeric Types
222 Date/Time.
2.3 Requests
2.3.1 Querying of API version
24 Responses

241 CommonResponse Header.

242 RequestBody

3 Realtime Requests

3.1 GetinverterRealtimeDatarequest

3.1.1 URL for HTTP requests
3.1.2 Parameters
3.1.3 Data Collections

3.1.4 Object structure of request body (Scope "Device")

3.1.5 Example of request body

(Scope "Device")

3.1.6 Object structure of request body (Scope "System")

3.1.7 Example of request body

(Scope "System")

3.2 GetSensorRealtimeDatarequest e

3.2.1 URL for HTTP requests
3.2.2 Parameters
3.2.3 Data Collections

3.2.4 Object structure of request body (DataCollection "NowSensorData")

3.2.5 Example of request body

(DataCollection "NowSensorData")

3.2.6 Object structure of request body (DataCollection "MinMaxSensorData")

3.2.7 Example of request body
3.3 GetStringRealtimeData request
3.3.1 URL for HTTP requests
3.3.2 Parameters
3.3.3 Data Collections

(DataCollection "MinMaxSensorData")

3.3.4 Object structure of request body (DataCollection "NowStringControlData" and "CurrentSum-

StringControlData") . .
3.3.5 Example of request body

(DataCollection "CurrentSumStringControlData")

3.3.6 Object structure of request body (DataCollection "LastErrorStringControlData")

3.3.7 Example of request body
3.4 GetlLoggerinforequest
3.4.1 URL for HTTP requests

(DataCollection "LastErrorStringControlData")

3.4.2 Object structure of requestbody

3.4.3 Example of request body
3.5 GetlInverterinfo request
3.5.1 URL for HTTP requests

3.5.2 Object structure of requestbody

3.5.3 Example of request body

3.5.4 Meaning of numerical statuscodes

3.6 GetActiveDevicelnfo request .
3.6.1 URL for HTTP requests
3.6.2 Parameters

3.6.3 Object structure of requestbody

3.6.4 Example of request body

4 Frequently asked questions

QA WWWNNNNDN N

OO OWOWWOWHONNOOOOOOOOM

PG G I G G G G
OO OT 01 O1NO OO

15
16
16
17
18
18
18
19
19
19
19
20
20
21
21
21
21
21

21

1 Introduction

The Fronius Solar APl is a means for third parties to obtain data from various Fronius devices (inverters, Sensor-
Cards, StringControls) in a defined format through a central facility which acts as a proxy (e.g. Fronius Datalogger
Web or Fronius Solar.web).

Currently, the only way to interact with this API is by making a HTTP request to a specific CGIl. The URLs for
the particular requests and the devices supporting them are listed at the beginning of each request description.
The APl is versioned, meaning that multiple versions of this APl may be available on the same device. The URLs
in this document always point to the version of the API which this document describes. The highest supported
version on the device can be queried. See 2.3.1 for details.

In order to check your product for compatibility with this version of the API specification, please see the separate
document provided for this purpose.

Realtime requests will obtain the data directly from the devices and can therefore only be used when the de-
vices are not in standby or unavailable in any other matter.

2 General Considerations

2.1 Output Formats

Currently, the only output format supported is JSON, a lightweight data interchange format. It is easy to read
and write for both humans and machines and it offers some advantages over XML, like basic typing and a leaner
structure.

2.2 Data Types
2.2.1 Numeric Types

JSON only knows one kind of numeric types, which can represent both floating point and integer values. It is
however possible to specify a type in JSON description, but it is always in the hands of the interpreting system
into which datatype a numeric node is converted.

Which range a certain numeric node actually can have is often determined by the device providing the value, and
may also vary depending on the type of device (e.g. "UAC" can be an integer value on older inverters, but a
floating point value on newer ones).

This means we cannot reliably specify value ranges for all requests. So it is the responsibility of the API user
to determine whether a value fits into a certain datatype in his language of choice.

What we can do is to specify whether a certain value is a floating point value (markes as "number") or an integer
value (marked as "integer"), where "integer" must not be interpreted as the datatype "int" like available in C/C++,
it just means it is a value without decimal places.

For these specifications, please refer to the sections discussing the respective request.

2.2.2 Date/Time

Information on date/time is always (and can only be) represented by a string. The format for these strings inside
this API has been defined as follows.

e Strings which include information on both date and time are always in RFC3339 format with time zone offset
or Zulu marker.
See Section 5.6 of RFC3339
Example 1: 2011-10-20T10:23:17+02:00 (UTC+2)
Example 2: 2011-10-20T08:23:17Z (UTC)

e Strings which only include information on the date are of the format yyyy-MM-dd.
e Strings which only include information on the time are of the format hh:mm: ss.

¢ If no information on the time zone is given, any date/time specification is considered to be in local time of
the PV system.

2.3 Requests
Currently, the only request protocol supported is HTTP.

2.3.1 Querying of API version

Future versions of the API export the highest supported version on the device using the URL
/solar_api/GetAPIVersion.cgi.

Listing 1: Object structure of GetAPIVersion response

object {

Numeric version of the API.
number APIVersion;

URL under which the CGIs for the requests can be reached.
string BaseURL;

Listing 2: Example: Complete response for GetAPIVersion request

1,

The first version of the API does not support this mechanism and returns HTTP error 404 instead. So any user
that wants to support different versions of the API shall assume the following response if the
/solar_api/GetAPIVersion.cgi fails with HTTP status code 404:

Listing 3: Assumed response for HTTP status code 404

2.4 Responses

The response will always be a valid JSON string ready to be evaluated by standard libraries.
If the response is delivered through HTTP, the Content-Type Header shall be either text/javascript or
application/json.

All JSON structures are described using Orderly JSON, a textual format for describing JSON data. Please refer
to the online documentation on Orderly for details.

Note that the definitions of some response bodies are not totally accurate, because there's no (known) way to
express nodes named after values/channels (e.g. objects which are named "PAC" or "Power"). But each descrip-
tion is accompanied by an example which should clear up any uncertainty.

The contents of the response object will vary depending on the preceding request but it always contains a common
response header and a request body.

Listing 4: Object structure of valid response

object {
object Head: {l}x*;

object Body: {}*;

Listing 5: Example: Complete response for GetinverterRealtimeData request

"Head": {

"RequestArguments": {
"Scope": "Device",
"DeviceIndex": O,
"DataCollection": "CommonInverterData"

}’
"Status": {
"Code": 0,
"Reason": ""
"UserMessage": ""
},
"Timestamp": "2011-10-20T10:09:14+02:00"
}’
"Body": {
"Data" : {
"DAY_ENERGY" : {
"Value" : 8000,
"Unit" : "Wh"
To
"FAC" : {
"Value" : 50,
"Unit" : "Hz"
To
"IAC" : {
"Value" : 14.54,
"Unit" : "A"
Yo
"IDC" : {
"Value" : 8.2,
"Unit" : "A"
Fo
"PAC" : {
"Value" : 3373,
"Unit" : "W"
},
"SAC" : {
"Value" : 3413,
"Unit" : "VA"
Yo
"TOTAL_ENERGY" : {
"Value" : 45000,
"Unit" : "Wh"
Fo
"UAC" : {
"Value" : 232,
"Unit" : "V"
}’
"upc" : {
"Value" : 426,
"Unit" : "V"
Yo
"YEAR_ENERGY" : {
"Value" : 44000,
"Unit" : "Wh"
Fo
"DeviceStatus" : {
"DeviceState" : 7,
"MgmtTimerRemainingTime" : -1,
"ErrorCode" : O,
"LEDColor" : 2,
"LEDState" : O,
"StateToReset" : false
}
}
}

}

2.41 Common Response Header

The common response header (CRH) is present in every response. It indicates, among other things, whether the
request has been successful and the body of the response is valid.

Listing 6: Object Structure of Common Response Header

object {

Repetition of the parameters which produced this response.
object {

Filled with properties named like the given parameters.
}* RequestArguments;

Information about the response.
object {

Indicates if the request went 0K or gives a hint about what went wrong.

0 means 0K, any other value means something went wrong (e.g. Device not available,
invalid params, no data in logflash for given time, ...).

integer Code;

Error message, may be empty.
string Reason;

Error message to be displayed to the user, may be empty.
string UserMessage;

} Status;

RFC3339 timestamp in localtime of the datalogger.

This is the time the request was answered - NOT the time when the data
was queried from the device.

string Timestamp;

};

2.4.2 Request Body

The request body contains the actual data produced by the request and is therefore different for each request.
The object structures of the various response bodies will be detailed later in the description of the respective API
request.

3 Realtime Requests

These requests will be provided where direct access to the realtime data of the devices is possible. This is cur-
rently the case for the Fronius Datalogger Web and the Fronius Datamanager.

In order to eliminate the need to specify each wanted value separately when making a request or querying each
value separately, so called "Data Collections" were defined.

The values in these collections are gathered from one or more Fronius Solar Net messages and supplied to the
user in a single response to a certain request.

It may be the case that more values are queried from the device than the user is interested in, but the overhead
caused by these superfluous values should be negligible compared to the advantages this strategy provides for
the user.

If a device cannot provide some values of a DataCollection (e.g. because they are not implemented on
the device) then those values are omitted from the response.

3.1

3.1.1 URL for HTTP requests

GetinverterRealtimeData request

/solar_api/GetInverterRealtimeData.cgi

3.1.2 Parameters

Parameter Type Range/Values/Pattern Description

Scope String | "Device" Query specific device(s) or whole system
"System"

Devicelndex Integer | 0...99 Only needed for Scope "Device"

Which inverter to query.

DataCollection | String | "CumulationinverterData" Only needed for Scope "Device"
"CommonlnverterData" Selects the collection of data that should
"3PInverterData" be queried from the device.
"MinMaxInverterData" See 3.1.3 for details.

3.1.3 Data Collections

CumulationinverterData Values which are cumulated to generate a system overview.

Value name JSON type Description
PAC unsigned integer | AC power
DAY_ENERGY unsigned integer | Energy generated on current day

YEAR_ENERGY

unsigned integer

Energy generated in current year

TOTAL_ENERGY

unsigned integer

Energy generated overall

DeviceStatus

object

Status information about inverter

CommonlinverterData Values which are provided by all types of Fronius inverters.

Value name JSON type Description

PAC unsigned integer | AC power

IAC floating point AC current

UAC floating point AC voltage

FAC floating point AC frequency

IDC floating point DC current

ubC floating point DC voltage

DAY_ENERGY unsigned integer | Energy generated on current day
YEAR_ENERGY | unsigned integer | Energy generated in current year
TOTAL_ENERGY | unsigned integer | Energy generated overall
DeviceStatus object Status information about inverter

3PInverterData Values which are provided by 3phase Fronius inverters.

Value name JSON type Description

IAC_L1 floating point AC current Phase 1

IAC_L2 floating point AC current Phase 2

IAC_L3 floating point AC current Phase 3

UAC_L1 floating point AC voltage Phase 1

UAC_L2 floating point AC voltage Phase 2

UAC_L3 floating point AC voltage Phase 3
T_AMBIENT signed integer Ambient temperature
ROTATION_SPEED_FAN_FL | unsigned integer | Rotation speed of front left fan
ROTATION_SPEED_FAN_FR | unsigned integer | Rotation speed of front right fan
ROTATION_SPEED_FAN_BL | unsigned integer | Rotation speed of back left fan
ROTATION_SPEED_FAN_BR | unsigned integer | Rotation speed of back right fan

MinMaxInverterData Minimum- and Maximum-values of various inverter values.

Value name JSON type Description

DAY _PMAX unsigned integer | Maximum AC power of current day
DAY_UACMAX floating point Maximum AC voltage of current day
DAY_UACMIN floating point Minimum AC voltage of current day
DAY_UDCMAX floating point Maximum DC voltage of current day
YEAR_PMAX unsigned integer | Maximum AC power of current year
YEAR_UACMAX | floating point Maximum AC voltage of current year
YEAR_UACMIN floating point Minimum AC voltage of current year
YEAR_UDCMAX | floating point Maximum DC voltage of current year
TOTAL_PMAX unsigned integer | Maximum AC power of current year

TOTAL_UACMAX

floating point

Maximum AC voltage overall

TOTAL_UACMIN

floating point

Minimum AC voltage overall

TOTAL_UDCMAX

floating point

Maximum DC voltage overall

3.1.4 Object structure of request body (Scope "Device")

Listing 7: Object structure of request body for GetlnverterRealtimeData request (Scope "Device")

object {

Collection of named value-unit pairs according to selected DataCollection.
Members of Data object are named according to the value they represent (e.g.

object {

Value-Unit pair.

object {

Unscaled value.
number Value;

Base unit of the value,
string Unit;

never contains any prefixes.

} __VALUE_NAME__;

}* Data;
i

3.1.5 Example of request body (Scope "Device")

Listing 8: Example of request body for GetinverterRealtimeData request (Scope "Device")

// GetInverterRealtimeData.cgi?Scope=Device&DeviceIndex=0&DataCollection=CommonInverterData

{
: {
: {
: 8000,
}’
g
: 50,
¥o
: {
: 14.54,
%o
: {
8.2,
}’
g
. 3373,

{
3413,
},
{
45000,
},
{
232,
},
{
426,
},
{
: 44000,
},
{
Ty
_1,
: 0,
2,
0,
false
}

3.1.6 Object structure of request body (Scope "System")

Listing 9: Object structure of request body for GetinverterRealtimeData request (Scope "System")

object {

Collection of named object(s) containing values per device and metadata.
Members of Data object are named according to the value they represent (e.g. "PAC").
object {

Value-Unit pair.
object {

Base unit of the value, never contains any prefixes.
string Unit;

Unscaled values per device.
Property name is the Devicelndex to which the value belongs.

object {
number 1; # value from device with index 1.
number 2; # value from device with index 2.
.. and so on.

}* Values;
} __VALUE_NAME__;

}* Data;

3.1.7 Example of request body (Scope "System")

Listing 10: Example of request body for GetlnverterRealtimeData request (Scope "System")

// GetInverterRealtimeData.cgi?Scope=System

{

: 4330,
: 3721

: 6366,
: 6000

: {
: {
: 1041607,
: 42000

: {
: {
: 356561131,
: 43000

3.2 GetSensorRealtimeData request

This request provides data for all channels of a single Fronius Sensor Card.
Inactive channels and channels with damaged sensors are not included in the response.

3.2.1 URL for HTTP requests

/solar_api/GetSensorRealtimeData.cgi

3.2.2 Parameters

Parameter Type Range/Values/Pattern Description
Devicelndex Integer | 0...9 Which card to query.
DataCollection | String | "NowSensorData" Selects the collection of data that should
"MinMaxSensorData" be queried from the device.
See 3.2.3 for details.

3.2.3 Data Collections

NowSensorData The presently measured values of every active channel.

MinMaxSensorData The minimum and maximum values for every time period (day, month, year, total) of every
channel.

Some channels do not have a minimum value because it would always be zero. For these channels, the minimum
value is not included.

3.2.4 Object structure of request body (DataCollection "NowSensorData")

Listing 11: Object structure of request body for GetSensorRealtimeData request (DataCollection "NowSensor-
Data")

object {
Collection of named object(s) containing values per channel and metadata.
Members of Data object are named according to the channel index they represent (e.g.
non) .
object {

Value-Unit pair.
object {

Value for the channel.
number Value;

Base unit of the value, never contains any prefixes.
string Unit;

} __CHANNEL_INDEX_ _;
}* Data;

};

3.2.5 Example of request body (DataCollection "NowSensorData")

Listing 12: Example of request body for GetSensorRealtimeData request (DataCollection "NowSensorData")

// GetSensorRealtimeData.cgi?Scope=Device&DeviceIndex=1&DataCollection=NowSensorData

{
: {
: {
-9,
}’
{
24,
}’
{
589,
}’
{
0,
}
}
}

3.2.6 Object structure of request body (DataCollection "MinMaxSensorData")

Listing 13: Object structure of request body for GetSensorRealtimeData request (DataCollection "MinMaxSen-
sorData")

object {
Collection of named object(s) containing min/max values per channel and metadata.

Members of Data object are named according to the channel index they represent (e.g.
non) .

10

object {

Object representing one channel.
object {

Whether this channel is currently active.
boolean SensorActive;

Object representing min/max values of current day.
object {

Maximum value with unit.
object Max {

number Value;

string Unit;

};

Minimum value with unit.
This object is only present in temperature channels (channel# O and 1)
as other channels do not have minimum values.
object Min {
number Value;
string Unit;
i
} Day;

Object representing min/max values of current month.
object {
object Max {
number Value;
string Unit;
};
object Min {
number Value;
string Unit;
};
} Month;

Object representing min/max values of current year.
object {
object Max {
number Value;
string Unit;
1
object Min {
number Value;
string Unit;
};
} Year;

Object representing total min/max values.
object {
object Max {
number Value;
string Unit;
1
object Min {
number Value;
string Unit;
1
} Total;

} __CHANNEL_INDEX__;

}* Data;

11

3.2.7 Example of request body (DataCollection "MinMaxSensorData")

Listing 14: Example of request body for GetSensorRealtimeData request (DataCollection "MinMaxSensorData")

// GetSensorRealtimeData.cgi?Scope=Device&DeviceIndex=1&DataCollection=MinMaxSensorData

{
: A{
: {
: true,
3
: {
75
¥y
8
_1,
}
},
: {
: {
15,
¥y
: {
_9,
}
},
: {
: {
. 35,
¥y
: {
-12,
}
To
: {
: {
. 37,
},
: {
=il 4
}
}
Ty
3
: true,
¢ {
: {
75
¥y
g
_2,
}
},
3
: {
9,

12

1,
non

}’
n3n

}’

"Min" : {
"Value"
"Unit"
}
To
"Year" : {
"Max" : {
"Value"
"Unit"
Yo
"Min" : {
"Value"
"Unit"
}
Fo
"Total" : {
"Max" : {
"Value"
"Unit"
Yo
"Min" : {
"Value"
"Unit"
}
}

{
"SensorActive"
"Day" : {

"Max" : {
"Value"
"Unit"
}
To
"Month" : {
"Max" : {
"Value"
"Unit"
}
Yo
"Year" : {
"Max" : {
"Value"
"Unit"
}
To
"Total" : {
"Max" : {
"Value"
"Unit"
}
}

{
"SensorActive"
"Day" : {

"Max" : {
"Value"
"Unit"
}
Fo
"Month" : {
"Max" : {
"Value"
"Unit"
}

-8,
"\u00BOC"

27,
"\u00BOC"
-11,
"\u00BOC"
31,
"\u00BOC"
-14,
"\u00BOC"
false,
593,

"W\/m\uOO0B2"

785,
"W\/m\uO0B2"

923,
"W\/m\uOO0B2"

932,
"W\/m\u0O0B2"
true,

5)

"km\/h"

22,
"km\/h"

13

}:
ngn

}:
ngn

},

"Year" : {
"Max" : {
"Value"
"Unit"
}
Yo
"Total" : {
"Max" : {
"Value"
"Unit"
}
}

{
"SensorActive"
"Day" : {

"Max" : {
"Value"
"Unit"
}
},
"Month" : {
"Max" : {
"Value"
"Unit"
}
Fo
"Year" : {
"Max" : {
"Value"
"Unit"
}
},
"Total" : {
"Max" : {
"Value"
"Unit"
}
}

{
"SensorActive"
"Day" : {

"Max" : {
"Value"
"Unit"
}
},
"Month" : {
"Max" : {
"Value"
"Unit"
}
Fo
"Year" : {
"Max" : {
"Value"
"Unit"
}
}’
"Total" : {
"Max" : {
"Value"
"Unit"
}
}

54,
"km\/h"

56,

"km\/h"

false,

0:
"Wh"

"Wh"

0:
"Wh"

0,

"Wh"

false,

0:

"mbar"

01
"mbar"

0:
"mbar"

0,
"mbar"

14

3.3 GetStringRealtimeData request
3.3.1 URL for HTTP requests

/solar_api/GetStringRealtimeData.cgi

3.3.2 Parameters

Parameter Type Range/Values/Pattern Description

Scope String | "Device" Query specific device

Devicelndex Integer | 0...199 Which device to query.

DataCollection | String | "NowStringControlData" Selects the collection of data that
"LastErrorStringControlData" should be queried from the device.
"CurrentSumStringControlData" | See 3.3.3 for details.

TimePeriod String | "Day" Only needed for Collection "Cur-
"Year" rentSumStringControlData"
"Total" For which time period the current

sums should be requested.

3.3.3 Data Collections

NowsStringControlData The presently measured currents of every channels.
LastErrorStringControlData Information about the last error which triggered a service message.
CurrentSumStringControlData Current sums of all channels for a selected time period (day, year or total).

3.3.4 Object structure of request body (DataCollection "NowStringControlData" and "CurrentSumsString-
ControlData")

Listing 15: Object structure of request body for GetStringRealtimeData request (DataCollection "NowStringCon-
trolData" and "CurrentSumsStringControlData")

object {
Collection of named object(s) containing values per channel and metadata.
Members of Data object are named according to the channel index they represent (e.g.
IIOH) .
object {

Value-Unit pair.
object {

Value for the channel.
number Value;

Base unit of the value, never contains any prefixes.
string Unit;

} __CHANNEL_INDEX__;
}* Data;

};

15

3.3.5 Example of request body (DataCollection "CurrentSumStringControlData")

Listing 16: Example of request body for GetStringRealtimeData request (DataCollection "CurrentSumStringCon-
trolData")

// GetStringRealtimeData.cgi?Scope=Device&DeviceIndex=1&DataCollection=
CurrentSumStringControlData&TimePeriod=Day

{
{
59.57,
},
{
47.98,
}:
{
47.6,
}s
{
36.17,
},
{
47.91,
}
3

3.3.6 Object structure of request body (DataCollection "LastErrorStringControlData")

Listing 17: Object structure of request body for GetStringRealtimeData request (DataCollection "LastErrorString-
ControlData")

object {
object {

Timestamp when the error was detected.
string TimeOfError;

Average value of all channels
at the time the error was detected.
object {

number Value;

Base unit of the value, never contains any prefixes.
string Unit;

} StringAverage;
Contains information about every channel
at the time the error was detected.

object {

Object representing one channel.
object {

Deviation from string average.
object {

number Value;

16

Base unit of the value, never contains any prefixes.
string Unit;

} Deviation;

Current sum
object {

number Value;

Base unit of the value, never contains any prefixes.
string Unit;

} Sum;
} __CHANNEL_INDEX_ _;
}* Channels;

} Data;

3.3.7 Example of request body (DataCollection "LastErrorStringControlData")

Listing 18: Example of request body for GetStringRealtimeData request (DataCollection "LastErrorStringControl-
Data")

// GetStringRealtimeData.cgi?Scope=Device&DeviceIndex=1&DataCollection=
LastErrorStringControlData

{
: {
46.22,
},
: {
{
{
24.7,
}’
{
57.66,
}
}’
{
{
0.3,
}5
{
46.4,
}
}7
{
{
-0.7,
}’
{
45.9,
}
}’

17

{
-24.5,
},
{
34.87,
}
}’
{
{
0.1,
})
{
46.29,
}
}

3.4 GetLoggerinfo request

This request provides information about the logging device which provides this API.

3.4.1 URL for HTTP requests

/solar_api/GetLoggerInfo.cgi
3.4.2 Object structure of request body

Listing 19: Object structure of request body for GetLoggerinfo request

object {
object {

Unique ID of the logging device.
string UniquelD;

Hardware version of the logging device.
string HWVersion;

Software version of the logging device.
string SWVersion;

Name of city/country which the user
selected as time zone.
string TimezonelLocation/[a-zA-Z]+|/;

Name of the selected time zone.
May be empty if information not available.
string TimezoneName/[a-zA-Z]+|/;

UTC offset in seconds east of UTC,

including adjustments for daylight saving.
integer UTCOffset;

Default language set on the logging device
as a two letter abbreviation (e.g. "en"

string DefaultLanguage;

The cash factor set on the logging device,

18

NOT the factor set on the inverters.
number CashFactor;

Currency of cash factor set on the logging device,
NOT the currency set on the inverters.
string CashCurrency;

The C02 factor set on the logging device,
NOT the factor set on the inverters.
number CO02Factor;
Unit of CO02 factor set on the logging device,
NOT the unit set on the inverters.
string CO02Unit;
} LoggerInfo;

};

3.4.3 Example of request body

Listing 20: Example of request body for GetLoggerinfo request

// GetLoggerInfo.cgi
{
{

3.5 Getlinverterinfo request

This request provides information about all inverters that are currently being monitored by the logging device. So
this means that inverters which are currently not online are also reported by this request, provided these inverters
have been seen by the logging device within the last 24 hours.

If information about devices currently online is needed, the GetActiveDevicelnfo request should be used. This
request also provides information about device classes other than inverters.

3.5.1 URL for HTTP requests

/solar_api/GetInverterInfo.cgi
3.5.2 Object structure of request body

Listing 21: Object structure of request body for Getlnverterinfo request

object {
Collection of objects with infos about one inverter,

mapped by inverter index.
object {

19

Info about a single inverter.
Name of object is the inverter index.
object {

Device type of the inverter.
integer DT;

PV power connected to this inverter (in watts).
If none defined, default power for this DT is used.

integer PVPower;

Unique ID of the inverter (e.g. serial number).
string UniquelD;

Error code that is currently present on inverter.
A value of -1 means that there is no valid error code.

number ErrorCode;

Status code reflecting the operational state of the inverter.
number StatusCode;

} __INVERTER_INDEX__;
}* Data;

};

3.5.3 Example of request body

Listing 22: Example of request body for Getlnverterinfo request

// GetInverterInfo.cgi

{
: q
8
192,
: 5000,
0,
Y
¥o
{
192,
: 5000,
0,
4
}
}
}

3.5.4 Meaning of numerical status codes

The StatusCode Field is only reported as numerical value. The meaning of the numbers is shown in the table
below.

Value | Description
0-6 | Startup

7 Running

8 Standby

9 Boot loading
10 Error

20

3.6 GetActiveDevicelnfo request

This request provides information about which devices are currently online.

3.6.1 URL for HTTP requests

/solar_api/GetActiveDeviceInfo.cgi

3.6.2 Parameters

Parameter Type | Range/Values/Pattern Description

DeviceClass | String | "Inverter" Which kind of device class to search for
"SensorCard" active devices.
"StringControl"

3.6.3 Object structure of request body

Listing 23: Object structure of request body for GetActiveDevicelnfo request

object {

Collection of objects with infos about one inverter,
mapped
object {

by inverter index.

Info about a single device.
Name of object is the device index.
object {

Device type of the device.
integer DT;

} __DEVICE_INDEX__;
}* Data;

};

3.6.4 Example of request body

Listing 24: Example of request body for GetActiveDevicelnfo request

// GetActiveDeviceInfo.cgi?DeviceClass=Inverter

{

192

192

4 Frequently asked questions

1. Which data can | get?
Currently only realtime data from inverters, Fronius Sensor Cards and Fronius String Controls. Also some
information about the logging device itself is available.
Please refer to the API specs for further details.

21

. Can multiple clients send requests to the API at the same time?
Yes, but the requests may take longer to complete.

. Can | use this API at the same time as other services of the Fronius Datalogger Web?
Yes. The datalogging, Solar.access/Solar.web connection, Webinterface, this API or any other service can
be used independently from the others.

. Can the API calls be password protected?
No. The API is always accessible without authentication, regardless of the user or admin password set on
the Webinterface.

. The API reports more inverters than | have, why is that?

This may be the case when the inverter number of an inverter is changed while the Fronius Datalogger
Web is running. The logger then detects a new device but keeps the same device with the previous inverter
number in the system for 24 hours. This is due to the fact that the datalogger is caching the devices for a
certain time even if they are not present on the bus (e.g. to be able to display energy values during the night
when the inverters are offline).

Those ghost devices will disappear 24 hours after the have been last seen by the datalogger. Alternatively,
a reboot of the datalogger also clears the device cache and repopulates it with the currently present devices.

22

Fronius Worldwide - www.fronius.com/addresses

Fronius International GmbH Fronius USA LLC Solar Electronics Division
4600 Wels, Froniusplatz 1, Austria 6797 Fronius Drive, Portage, IN 46368
E-Mail: pv@fronius.com E-Mail: pv-us@fronius.com
http://www.fronius.com http://www.fronius-usa.com

Under http://www.fronius.com/addresses you will find all addresses of our sales branches and partner firms!

ud_fr_se_so_00913 012013

	Fronius Sales and Service Offices
	www.fronius.com
	Send E-Mail

