

Issue 1 – 2019

MATERIALS & SAFETY - R&D

TR 31367

page 1 of 11

FORM C TYPE TEST VERIFICATION REPORT

Type Approval and Manufacturer declaration of compliance with the requirements of G98/NI.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to NIE Networks, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98/NI.

Manufacturer's reference number		Primo GEN24 3.6				
Micro-generator technology		transformerless				
Manufacturer name		Fronius International GmbH				
Address			ter Fronius Str 1 Wels-Thalheim, 7	Austria		
Tel	+43-7242-241-0		Fax	+43-7242-241-224		
E:mail	pv@fronius.com		Web site	www.fronius.com		

	Connection Option				
Registered Capacity , use separate sheet if more than one connection option.	3.68	kW single phase, single, split or three phase system			
		kW three phase			
		kW two phases in three phase system			
		kW two phases split phase system			

Manufacturer Type Test declaration. - I certify that all products supplied by the company with the above **Fully Type Tested** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98/NI.

Signed

FRONUS/INTERNATIONAL GABH Günter Fickide Stit 242/600 Weit Algaheim Tel: +43/(0) 72 42 /241-0, Fax 47 8 25	On behalf of	Fronius International GmbH
--	--------------	----------------------------

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

 MATERIALS & SAFETY - R&D
 T R
 31367
 page 2 of 11

 Operating Range: This test should be carried out as specified in EN 50438 D.3.1.

Active Power shall be recorded every second. The tests will verify that the Micro-generator can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV Micro-generator the PV primary source may be replaced by a DC source.

In case of a full converter **Micro-generator** (e.g. wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source.

In case of a DFIG **Micro-generator** the mechanical drive system may be replaced by a test bench motor.

Schon moton				
Test 1				
Voltage = 85% of nominal (195.5 V)				
Frequency = 47.5 Hz	Always connected			
Power factor = 1				
Period of test 90 minutes				
Test 2				
Voltage = 110% of nominal (253 V).				
Frequency = 51.5 Hz	Always connected			
Power factor = 1				
Period of test 90 minutes				
Test 3				
Voltage = 110% of nominal (253 V).				
Frequency = 52.0 Hz	Always connected			
Power factor = 1				
Period of test 15 minutes				
Remark: During the tests 1, 2 and 3 the unit does not disconnect, tests have been passed.				

MATERIALS & SAFETY - R&D

TR 31367

page 3 of 11

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2								
Micro-generator rating per phase (rpp)		3.68	kW					
Harmonic		f Registered acity		Registered acity				
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above		
2	0.014	0.017	0.012	0.015	1.080			
3	0.016	0.020	0.020	0.025	2.300			
4	0.014	0.017	0.012	0.014	0.430			
5	0.016	0.020	0.014	0.017	1.140			
6	0.008	0.010	0.007	0.009	0.300			
7	0.016	0.020	0.008	0.010	0.770			
8	0.007	0.008	0.006	0.008	0.230			
9	0.061	0.075	0.046	0.056	0.400			
10	0.006	0.008	0.006	0.007	0.184			
11	0.023	0.028	0.038	0.046	0.330			
12	0.005	0.006	0.005	0.006	0.153			
13	0.009	0.010	0.034	0.042	0.210			
14	0.005	0.006	0.005	0.006	0.131			
15	0.018	0.022	0.032	0.039	0.150			
16	0.004	0.005	0.005	0.006	0.115			
17	0.020	0.024	0.029	0.036	0.132			
18	0.004	0.005	0.005	0.006	0.102			
19	0.014	0.017	0.026	0.031	0.118			
20	0.004	0.004	0.004	0.005	0.092			
21	0.006	0.008	0.023	0.029	0.107	0.160		

Issue 1 – 2019

MATERIALS & SAFETY - R&D

TR 31367

page 4 of 11

22	0.004	0.005	0.004	0.005	0.084			
23	0.008	0.010	0.019	0.023	0.098	0.147		
24	0.004	0.005	0.004	0.005	0.077			
25	0.011	0.014	0.019	0.023	0.090	0.135		
26	0.004	0.005	0.004	0.005	0.071			
27	0.010	0.012	0.015	0.018	0.083	0.124		
28	0.004	0.005	0.004	0.005	0.066			
29	0.005	0.006	0.012	0.015	0.078	0.117		
30	0.004	0.005	0.005	0.006	0.061			
31	0.006	0.007	0.011	0.013	0.073	0.109		
32	0.004	0.005	0.005	0.006	0.058			
33	0.009	0.011	0.011	0.014	0.068	0.102		
34	0.004	0.005	0.005	0.007	0.054			
35	0.010	0.013	0.012	0.014	0.064	0.096		
36	0.006	0.007	0.005	0.007	0.051			
37	0.008	0.010	0.012	0.015	0.061	0.091		
38	0.005	0.006	0.006	0.007	0.048			
39	0.008	0.010	0.013	0.016	0.058	0.087		
40	0.019	0.023	0.024	0.030	0.046			
these high	Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.							

Issue 1 – 2019

MATERIALS & SAFETY - R&D

TR 31367

page 5 of 11

				ions	s and	d Flicke	r: These	e tests	shoul	d be u	undertaken in
accordance				N	•				,		
Annex A1 A			connecte	-			4.2.3.3 (5				
	Starti				topp	T			nning		
	d _{max}	d _c	d _(t)	ď	nax	d _c	d _(t)	P _{st}		P _{lt} 2h	
Measured Values at test impedance	0.49	1.13	-	0.0	61	1.8	-	0.29	9	0.278	9
Normalised to standard impedance	0.49	1.13	- 0.		61	1.8	-	0.29	9	0.278	9
Normalised to required maximum impedance	-	-	-	-		-	-	-		-	
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%	4%	%	3.3%	3.3%	1.0		0.65	
—									0.0-		
Test Impedance	R		0.4		Ω		X		0.25		Ω
Standard Impedance	R		0.24 * C		Ω		X		0.15 * 0.25^		Ω
Maximum Impedance * Applies to th	R ree phas		-	ohas	Ω X nase Micro-generators.			-		Ω	
						-		using	two pha	ases on	a three phase
For voltage ch values to the r											t the measured above.
Normalised va point.	alue = N	leasured	1 value*re	fere	nce s	ource re	sistance/r	neasui	ed sou	rce res	sistance at test
Single phase u	units refe	rence so	ource resis	stand	ce is C).4 Ω					
Two phase un	its in a th	ree pha	se system	refe	erence	e source	resistance	e is 0.4	Ω.		
Two phase un	its in a s	olit phas	e system	refer	rence	source re	esistance	is 0.24	Ω.		
Three phase u	inits refe	rence sc	urce resis	tanc	e is 0	.24 Ω.					
•	wer facto	r of the	output is u	unde			eXtoRra	atio of	the test	impeda	ance should be
The stopping t	est shou	ld be a t	rip from fu	III loa	ad ope	eration.					
The duration of the technology										in the te	esting notes for
Test start		06:1			est en)8:15	2	020-10-20
Test location		Fror	ius R&D I nter Froni	Labo	oratori	es, Froni		tional	GmbH,		- *

MATERIALS & SAFETY - R&D

TR 31367

page 6 of 11

Power quality – DC injection: This test should be carried out in accordance with EN 50438 Annex D.3.10								
Test power level	20%	50%	75%	100%				
Recorded value in Amps	0.0145	0.0105	0.0088	0.0086				
as % of rated AC current	0.1115	0.0807	0.0677	0.0661				
Limit	0.25%	0.25%	0.25%	0.25%				

Power Quality – Power factor: This test shall be carried out in accordance with EN 50538 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within \pm 1.5% of the stated level during the test.

	g the toot.		
	216.2 V	230 V	253 V
20% of Registered Capacity	1.00	1.00	1.00
50% of Registered Capacity	1.00	1.00	1.00
75% of Registered Capacity 1.00		1.00	1.00
100% of Registered Capacity	1.00	1.00	1.00
Power factor Limit – leading	>0.95	>0.95	>0.95
Power factor Limit – lagging	>0.98	>0.98	>0.98

will not trip in error.

ENA Engineering Recommendation G98/NI Issue 1 – 2019

MATERIALS & SAFETY - R&D

TR 31367

page 7 of 11

Protection – Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98/NI Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous)

Function	Setting	Setting			"No trip tests"		
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip	
U/F	48Hz	0.5s	47.996Hz	0.539s	48.2 Hz 25 s	Confirmed	
					47.8 Hz 0.45 s	Confirmed	
O/F	52Hz	1.0s	52.003Hz	1.043s	51.8 Hz 120.0 s	Confirmed	
					52.2 Hz 0.98 s	Confirmed	
a larger devia	ation than the minim	um required t	o operate the project	ction can be u	sed. The "No tr	asure the time delay ip tests" need to be e that the protection	

50438 Anr		d the not	es in EREC			ordance with EN 1.2.2 (Inverter
Function	Setting		Trip test		"No trip tes	ts"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V stage 1	195.5V	3s	195.3V	3.046s	199.5 V 5.0 s	Confirmed
U/V stage 2	138V	2s	137.787V	2.048s	142 V 2.5 s	Confirmed
					134 V 1.98 s	Confirmed
O/V	253 V	1.0s	253.75V	0.55s	249 V 5.0 s	Confirmed
					257 V 0.45 s	Confirmed measured at a larger

deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Issue 1 – 2019

TR 31367

page 8 of 11

Protection – Loss of Mains test: For PV Inverters shall be tested in accordance with							
BS EN 62116.							
D.2.5 at 10%, 5	5% and 100	% of rated p	ower.				
To be carried out a	t three output p	ower levels w	ith a tolerance	of plus or minu	us 5% in Test F	Power levels.	
Test Power	10%	55%	100%	10%	55%	100%	
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	
Trip time. Limit is 0.5 seconds							
For Multi phase	Micro-gene	rators confir	m that the o	device shuts	down corre	ctly after the	
removal of a sing	le fuse as we	Il as operatio	n of all phase	s.		-	
Test Power	10%	55%	100%	10%	55%	100%	
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	
Trip time. Ph1							
fuse removed							
Test Power	10%	55%	100%	10%	55%	100%	
Balancing load on islanded network	95% of Registered	95% of Registered	95% of Registered	105% of Registered	105% of Registered	105% of Registered	
	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity	
Trip time. Ph2							
fuse removed							
Test Power	10%	55%	100%	10%	55%	100%	
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	
Trip time. Ph3							
fuse removed							
Note for technolog establishing that th 1.0 s for these tech Indicate additiona	e trip occurred nologies.	d in less than (0.5 s. Maximu	m shut down t			
For Inverters tes					should be re	corded in the	
following table. Test Power and	33%	66%	100%	33%	66%	100%	
imbalance							
	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P	
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10	
Trip Time Limit is	242.0 ms	238.0 ms	315.8 ms	230.6 ms	228.0 ms	261.8 ms	

0.5s

Negative Vector Shift

ENA Engineering Recommendation G98/NI Issue 1 – 2019

Confirmed

MATERIALS & SAFETY - R&D

TR 31367

page 9 of 11

Protection – Frequency change, Vector Shift Stability test: This test should be carried out in accordance with EREC G98/NI Annex A1 A.1.2.6 (Inverter connected) or						
Annex A2 A.2.2.6 (Synchronous).						
	Start	Change	Confirm no trip			
Frequency						
Positive Vector Shift	49.5Hz	+50 degrees	Confirmed			

-50 degrees

50.5Hz

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous).						
Ramp range	Test frequency ramp:	Test Duration	Confirm no trip			
49.0 Hz to 51.0Hz	+0.95 Hzs ⁻¹	2.1 s	Confirmed			
51.0 Hz to 49.0Hz	-0.95 Hzs ⁻¹	2.1 s	Confirmed			

Limited Frequency S carried out in accorda frequency. The test sho	ance with EN	50438 Anne	x D.3.3 Power respon	nse to over-
Hz and Droop of 4%. Test sequence at	Measured	Frequency	Primary Power Source	Active
Registered Capacity >80%	Active Power Output	Trequency		Power Gradient
Step a) 50.00 Hz ±0.01 Hz	3675 W	50.00Hz		
Step b) 50.25 Hz ±0.05 Hz	3625 W	50.25Hz		
Step c) 50.70 Hz ±0.10 Hz	2787 W	50.70Hz		
Step d) 51.15 Hz ±0.05 Hz	1950 W	51.15Hz	3.8kW	50%/Hz
Step e) 50.70 Hz ±0.10 Hz	2787 W	50.70Hz		
Step f) 50.25 Hz ±0.05 Hz	3625 W	50.25Hz		
Step g) 50.00 Hz ±0.01 Hz	3674 W	50.00Hz		
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	1844 W	50.00Hz		
Step b) 50.25 Hz ±0.05 Hz	1784 W	50.25Hz		
Step c) 50.70 Hz ±0.10 Hz	1371 W	50.70Hz		
Step d) 51.15 Hz ±0.05 Hz	958 W	51.15Hz	1.9kW	50%/Hz
Step e) 50.70 Hz ±0.10 Hz	1371 W	50.70Hz		
Step f) 50.25 Hz ±0.05 Hz	1784 W	50.25Hz		
Step g) 50.00 Hz ±0.01 Hz	1834 W	50.00Hz		
Steps as defined in EN 5043	8	1		

MATERIALS & SAFETY - R&D

TR 31367

page 10 of 11

Power output with falling frequency test: This test should be carried out in accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency and under state conditions.								
Test sequence Measured Active Frequency Primary power source Power Output Frequency Primary power source								
Test a) 50 Hz ± 0.01 Hz	3680W	50Hz	3.8kW					
Test b) Point between 49.5 Hz and 49.6 Hz	3680W	49.55Hz	3.8kW					
Test c) Point between 47.5 Hz and 47.6 Hz	3680W	47.55Hz	3.8kW					
NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes								

Re-connection timer.								
Test should	Test should prove that the reconnection sequence starts after a minimum delay of 60 s for							
restoration of	restoration of voltage and frequency to within the stage 1 settings of Table 2.							
Time delay	Measured		Checks on no reconnection when voltage or frequency is					
setting	delay		brought to just outside stage 1 limits of table 2.					
60.0s	60.0s 86s At 257 V At 191.5 V At 47.9Hz At 52.1Hz							
	Confirmation that the Micro-generatorConfirmedConfirmedConfirmedConfirmeddoes not re-connect.ConfirmedConfirmedConfirmed							

Fault level contribution: These tests shall be carried out in accordance with EREC								
G98/NI Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).								
For machines with electro-magnetic output			For Inverter	For Inverter output				
Parameter	Symbol	Value	Time after fault	Volts	Amps			
Peak Short Circuit current	i _p		20ms	17.4	51.6			
Initial Value of aperiodic current	A		100ms	15.5	23.8			
Initial symmetrical short- circuit current*	 k		250ms	15.2	15.4			
Decaying (aperiodic) component of short circuit current*	i _{DC}		500ms	15.11	11.1			
Reactance/Resistance Ratio of source*	×/R		Time to trip	0.09	In seconds			

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface.	Yes
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98/NI Annex A1 A.1.3.6 (Inverter connected).	NA
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	

MATERIALS & SAFETY - R&D

TR 31367

page 11 of 11

Additional comments