

**ENA Engineering Recommendation G98/NI** 

Issue 1 - 2019

MATERIALS & SAFETY - R&D

TR 31315

page 1 of 18

## FORM C TYPE TEST VERIFICATION REPORT

Type Approval and **Manufacturer** declaration of compliance with the requirements of G98/NI.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to NIE Networks, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98/NI.

| Manufacturer's reference number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                      | Fronius Symo GEN24                                   |                                       |                                                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| Micro-generator technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                      | transformerless                                      |                                       |                                                                                                               |  |
| Manufacture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er name                         |                      | Froni                                                | us International G                    | mbH                                                                                                           |  |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                      |                                                      | ter Fronius Str 1<br>Wels-Thalheim, A | Austria                                                                                                       |  |
| Tel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +43-7242-2                      | 41-0                 |                                                      | Fax                                   | +43-7242-241-224                                                                                              |  |
| E:mail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pv@fronius.                     | сот                  |                                                      | Web site                              | www.fronius.com                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                      |                                                      | Connection O                          | ption                                                                                                         |  |
| Registered (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Capacity.                       |                      | kW single phase, single, split or three phase system |                                       |                                                                                                               |  |
| use separate more than or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sheet if                        | 6                    | kW three phase                                       |                                       |                                                                                                               |  |
| connection o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ption.                          |                      | kW two phases in three phase system                  |                                       |                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                      | kW tv                                                | vo phases split ph                    | ase system                                                                                                    |  |
| Type Tested<br>this docume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I reference n<br>nt, prior to s | umber will be manufa | actured<br>that no                                   | and tested to en                      | ed by the company with the above<br>sure that they perform as stated in<br>ns are required to ensure that the |  |
| Signed Frontie Structure S |                                 |                      | On behalf of Fronius International GmbH              |                                       |                                                                                                               |  |
| Note that tes house.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sting can be                    | done by the Manufa   | acture                                               | <b>r</b> of an individual             | component or by an external test                                                                              |  |

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.



MATERIALS & SAFETY - R&D

page 2 of 18

| <b>Operating Range:</b> This test should be carried out as specified in EN 50438 D.3.1.                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Active Power shall be recorded every second. The tests will verify that the Micro-generator can operate within the required ranges for the specified period of time.    |
| The Interface Protection shall be disabled during the tests.                                                                                                            |
| In case of a PV Micro-generator the PV primary source may be replaced by a DC source.                                                                                   |
| In case of a full converter <b>Micro-generator</b> (e.g. wind) the primary source and the prime mover <b>Inverter</b> /rectifier may be replaced by a <b>DC</b> source. |
| In case of a DFIG <b>Micro-generator</b> the mechanical drive system may be replaced by a test bench motor.                                                             |
| Test 1                                                                                                                                                                  |
| Voltage = 85% of nominal (195.5 V)                                                                                                                                      |
| Frequency = 47.5 Hz                                                                                                                                                     |
| Power factor = 1                                                                                                                                                        |
| Period of test 90 minutes                                                                                                                                               |
| Test 2                                                                                                                                                                  |
| Voltage = 110% of nominal (253 V).                                                                                                                                      |
| Frequency = 51.5 Hz                                                                                                                                                     |
| Power factor = 1                                                                                                                                                        |
| Period of test 90 minutes                                                                                                                                               |
| Test 3                                                                                                                                                                  |
| Voltage = 110% of nominal (253 V).                                                                                                                                      |
| Frequency = 52.0 Hz                                                                                                                                                     |
| Power factor = 1                                                                                                                                                        |
| Period of test 15 minutes                                                                                                                                               |
|                                                                                                                                                                         |

TR 31315

<u>Remark:</u> During the tests 1, 2 and 3 the unit does not disconnect, tests have been passed.



MATERIALS & SAFETY - R&D

TR 31315

page 3 of 18

**Power Quality – Harmonics**: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

| Micro-generator tested to BS EN 61000-3-2 Phase 1 |                                 |            |                                 |                     |                                               |                                                   |  |  |
|---------------------------------------------------|---------------------------------|------------|---------------------------------|---------------------|-----------------------------------------------|---------------------------------------------------|--|--|
| Micro-generator rating per phase (rpp)            |                                 |            | 2,074                           | kW                  |                                               |                                                   |  |  |
| Harmonic                                          | At 45-55% o<br><b>Cap</b> a     | Registered |                                 | Registered<br>acity |                                               |                                                   |  |  |
|                                                   | Measured<br>Value MV in<br>Amps |            | Measured<br>Value MV in<br>Amps |                     | Limit in<br>BS EN<br>61000-<br>3-2 in<br>Amps | Higher limit for<br>odd harmonics<br>21 and above |  |  |
| 2                                                 | 0.000                           |            | 0.003                           |                     | 1.080                                         |                                                   |  |  |
| 3                                                 | 0.001                           |            | 0.001                           |                     | 2.300                                         |                                                   |  |  |
| 4                                                 | 0.002                           |            | 0.002                           |                     | 0.430                                         |                                                   |  |  |
| 5                                                 | 0.002                           |            | 0.001                           |                     | 1.140                                         |                                                   |  |  |
| 6                                                 | 0.001                           |            | 0.001                           |                     | 0.300                                         |                                                   |  |  |
| 7                                                 | 0.003                           |            | 0.003                           |                     | 0.770                                         |                                                   |  |  |
| 8                                                 | 0.000                           |            | 0.001                           |                     | 0.230                                         |                                                   |  |  |
| 9                                                 | 0.001                           |            | 0.000                           |                     | 0.400                                         |                                                   |  |  |
| 10                                                | 0.000                           |            | 0.001                           |                     | 0.184                                         |                                                   |  |  |
| 11                                                | 0.017                           |            | 0.013                           |                     | 0.330                                         |                                                   |  |  |
| 12                                                | 0.000                           |            | 0.000                           |                     | 0.153                                         |                                                   |  |  |
| 13                                                | 0.014                           |            | 0.013                           |                     | 0.210                                         |                                                   |  |  |
| 14                                                | 0.000                           |            | 0.000                           |                     | 0.131                                         |                                                   |  |  |
| 15                                                | 0.000                           |            | 0.000                           |                     | 0.150                                         |                                                   |  |  |
| 16                                                | 0.000                           |            | 0.000                           |                     | 0.115                                         |                                                   |  |  |
| 17                                                | 0.008                           |            | 0.012                           |                     | 0.132                                         |                                                   |  |  |
| 18                                                | 0.000                           |            | 0.000                           |                     | 0.102                                         |                                                   |  |  |
| 19                                                | 0.006                           |            | 0.012                           |                     | 0.118                                         |                                                   |  |  |



| MATERIA | LS & SAFETY | R&D | TR 31315 |  |       | page 4 of 18 |  |  |
|---------|-------------|-----|----------|--|-------|--------------|--|--|
| 20      | 0.000       |     | 0.000    |  | 0.092 |              |  |  |
| 21      | 0.001       |     | 0.000    |  | 0.107 | 0.160        |  |  |



**ENA Engineering Recommendation G98/NI** 

Issue 1 – 2019

MATERIALS & SAFETY - R&D

TR 31315

page 5 of 18

| 22       | 0.000 | 0.000                                                                        |       |
|----------|-------|------------------------------------------------------------------------------|-------|
| 23       | 0.004 | 0.011                                                                        | 0.147 |
| 24       | 0.000 | 0.000                                                                        |       |
| 25       | 0.003 | 0.011                                                                        | 0.135 |
| 26       | 0.000 | 0.001                                                                        |       |
| 27       | 0.001 | 0.000                                                                        | 0.124 |
| 28       | 0.000 | 0.000                                                                        |       |
| 29       | 0.005 | 0.011                                                                        | 0.117 |
| 30       | 0.000 | 0.000                                                                        |       |
| 31       | 0.006 | 0.010                                                                        | 0.109 |
| 32       | 0.000 | 0.001                                                                        |       |
| 33       | 0.000 | 0.000                                                                        | 0.102 |
| 34       | 0.000 | 0.000                                                                        |       |
| 35       | 0.005 | 0.010                                                                        | 0.096 |
| 36       | 0.000 | 0.000                                                                        |       |
| 37       | 0.006 | 0.009                                                                        | 0.091 |
| 38       | 0.000 | 0.000                                                                        |       |
| 39       | 0.000 | 0.001                                                                        | 0.087 |
| 40       | 0.000 | 0.000                                                                        |       |
| these hi |       | harmonics 21 and above are only allo<br>d please state the exemption used as |       |



MATERIALS & SAFETY - R&D

TR 31315

page 6 of 18

**Power Quality – Harmonics**: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

| Micro-generator tested to BS EN 61000-3-2 Phase 2 |                                 |                       |                                 |                     |                                               |                                                   |  |  |
|---------------------------------------------------|---------------------------------|-----------------------|---------------------------------|---------------------|-----------------------------------------------|---------------------------------------------------|--|--|
| Micro-generator rating per phase (rpp)            |                                 |                       | 2,046                           | kW                  |                                               |                                                   |  |  |
| Harmonic                                          |                                 | f Registered<br>acity |                                 | Registered<br>acity |                                               |                                                   |  |  |
|                                                   | Measured<br>Value MV in<br>Amps |                       | Measured<br>Value MV in<br>Amps |                     | Limit in<br>BS EN<br>61000-<br>3-2 in<br>Amps | Higher limit for<br>odd harmonics<br>21 and above |  |  |
| 2                                                 | 0.00                            |                       | 0.002                           |                     | 1.080                                         |                                                   |  |  |
| 3                                                 | 0.01                            |                       | 0.003                           |                     | 2.300                                         |                                                   |  |  |
| 4                                                 | 0.00                            |                       | 0.000                           |                     | 0.430                                         |                                                   |  |  |
| 5                                                 | 0.00                            |                       | 0.001                           |                     | 1.140                                         |                                                   |  |  |
| 6                                                 | 0.00                            |                       | 0.000                           |                     | 0.300                                         |                                                   |  |  |
| 7                                                 | 0.00                            |                       | 0.002                           |                     | 0.770                                         |                                                   |  |  |
| 8                                                 | 0.00                            |                       | 0.001                           |                     | 0.230                                         |                                                   |  |  |
| 9                                                 | 0.00                            |                       | 0.001                           |                     | 0.400                                         |                                                   |  |  |
| 10                                                | 0.00                            |                       | 0.000                           |                     | 0.184                                         |                                                   |  |  |
| 11                                                | 0.02                            |                       | 0.014                           |                     | 0.330                                         |                                                   |  |  |
| 12                                                | 0.00                            |                       | 0.000                           |                     | 0.153                                         |                                                   |  |  |
| 13                                                | 0.01                            |                       | 0.013                           |                     | 0.210                                         |                                                   |  |  |
| 14                                                | 0.00                            |                       | 0.000                           |                     | 0.131                                         |                                                   |  |  |
| 15                                                | 0.00                            |                       | 0.000                           |                     | 0.150                                         |                                                   |  |  |
| 16                                                | 0.00                            |                       | 0.000                           |                     | 0.115                                         |                                                   |  |  |
| 17                                                | 0.01                            |                       | 0.013                           |                     | 0.132                                         |                                                   |  |  |
| 18                                                | 0.00                            |                       | 0.000                           |                     | 0.102                                         |                                                   |  |  |
| 19                                                | 0.01                            |                       | 0.013                           |                     | 0.118                                         |                                                   |  |  |



| MATERIA | LS & SAFETY | R&D | TR 31315 |  |       | page 7 of 18 |  |  |
|---------|-------------|-----|----------|--|-------|--------------|--|--|
| 20      | 0.00        |     | 0.000    |  | 0.092 |              |  |  |
| 21      | 0.00        |     | 0.000    |  | 0.107 | 0.160        |  |  |



MATERIALS & SAFETY - R&D

TR 31315

page 8 of 18

| -                                                                                                                                                                                                                                                                            |      |       |       |       |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|--|--|--|--|
| 22                                                                                                                                                                                                                                                                           | 0.00 | 0.001 | 0.084 |       |  |  |  |  |
| 23                                                                                                                                                                                                                                                                           | 0.00 | 0.011 | 0.098 | 0.147 |  |  |  |  |
| 24                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.077 |       |  |  |  |  |
| 25                                                                                                                                                                                                                                                                           | 0.00 | 0.011 | 0.090 | 0.135 |  |  |  |  |
| 26                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.071 |       |  |  |  |  |
| 27                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.083 | 0.124 |  |  |  |  |
| 28                                                                                                                                                                                                                                                                           | 0.00 | 0.001 | 0.066 |       |  |  |  |  |
| 29                                                                                                                                                                                                                                                                           | 0.01 | 0.011 | 0.078 | 0.117 |  |  |  |  |
| 30                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.061 |       |  |  |  |  |
| 31                                                                                                                                                                                                                                                                           | 0.01 | 0.010 | 0.073 | 0.109 |  |  |  |  |
| 32                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.058 |       |  |  |  |  |
| 33                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.068 | 0.102 |  |  |  |  |
| 34                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.054 |       |  |  |  |  |
| 35                                                                                                                                                                                                                                                                           | 0.01 | 0.010 | 0.064 | 0.096 |  |  |  |  |
| 36                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.051 |       |  |  |  |  |
| 37                                                                                                                                                                                                                                                                           | 0.01 | 0.009 | 0.061 | 0.091 |  |  |  |  |
| 38                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.048 |       |  |  |  |  |
| 39                                                                                                                                                                                                                                                                           | 0.00 | 0.000 | 0.058 | 0.087 |  |  |  |  |
| 40                                                                                                                                                                                                                                                                           | 0.00 | 0.001 | 0.046 |       |  |  |  |  |
| 0.00       0.001       0.046         Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below. |      |       |       |       |  |  |  |  |



MATERIALS & SAFETY - R&D

TR 31315

page 9 of 18

**Power Quality – Harmonics**: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

| Micro-generator         tested to BS EN 61000-3-2 Phase 3           Micro-generator         rating per phase (rpp)         2,048         kW |                                        |            |                                 |                     |                                               |                                                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|---------------------------------|---------------------|-----------------------------------------------|---------------------------------------------------|--|--|--|
| Micro-ger                                                                                                                                   | Micro-generator rating per phase (rpp) |            |                                 | kW                  |                                               |                                                   |  |  |  |
| Harmonic                                                                                                                                    |                                        | Registered |                                 | Registered<br>acity |                                               |                                                   |  |  |  |
|                                                                                                                                             | Measured<br>Value MV in<br>Amps        |            | Measured<br>Value MV in<br>Amps |                     | Limit in<br>BS EN<br>61000-<br>3-2 in<br>Amps | Higher limit for<br>odd harmonics<br>21 and above |  |  |  |
| 2                                                                                                                                           | 0.00                                   |            | 0.001                           |                     | 1.080                                         |                                                   |  |  |  |
| 3                                                                                                                                           | 0.00                                   |            | 0.002                           |                     | 2.300                                         |                                                   |  |  |  |
| 4                                                                                                                                           | 0.00                                   |            | 0.002                           |                     | 0.430                                         |                                                   |  |  |  |
| 5                                                                                                                                           | 0.00                                   |            | 0.000                           |                     | 1.140                                         |                                                   |  |  |  |
| 6                                                                                                                                           | 0.00                                   |            | 0.000                           |                     | 0.300                                         |                                                   |  |  |  |
| 7                                                                                                                                           | 0.00                                   |            | 0.003                           |                     | 0.770                                         |                                                   |  |  |  |
| 8                                                                                                                                           | 0.00                                   |            | 0.001                           |                     | 0.230                                         |                                                   |  |  |  |
| 9                                                                                                                                           | 0.00                                   |            | 0.001                           |                     | 0.400                                         |                                                   |  |  |  |
| 10                                                                                                                                          | 0.00                                   |            | 0.000                           |                     | 0.184                                         |                                                   |  |  |  |
| 11                                                                                                                                          | 0.02                                   |            | 0.013                           |                     | 0.330                                         |                                                   |  |  |  |
| 12                                                                                                                                          | 0.00                                   |            | 0.000                           |                     | 0.153                                         |                                                   |  |  |  |
| 13                                                                                                                                          | 0.01                                   |            | 0.013                           |                     | 0.210                                         |                                                   |  |  |  |
| 14                                                                                                                                          | 0.00                                   |            | 0.000                           |                     | 0.131                                         |                                                   |  |  |  |
| 15                                                                                                                                          | 0.00                                   |            | 0.001                           |                     | 0.150                                         |                                                   |  |  |  |
| 16                                                                                                                                          | 0.00                                   |            | 0.000                           |                     | 0.115                                         |                                                   |  |  |  |
| 17                                                                                                                                          | 0.01                                   |            | 0.012                           |                     | 0.132                                         |                                                   |  |  |  |
| 18                                                                                                                                          | 0.00                                   |            | 0.000                           |                     | 0.102                                         |                                                   |  |  |  |
| 19                                                                                                                                          | 0.01                                   |            | 0.012                           |                     | 0.118                                         |                                                   |  |  |  |



| MATERIA | LS & SAFETY | R&D | TR 31315 |  |       | page 10 of 18 |  |  |
|---------|-------------|-----|----------|--|-------|---------------|--|--|
| 20      | 0.00        |     | 0.000    |  | 0.092 |               |  |  |
| 21      | 0.00        |     | 0.000    |  | 0.107 | 0.160         |  |  |



MATERIALS & SAFETY - R&D

TR 31315

page 11 of 18

| 22                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.084 |       |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------|-------|--|--|--|--|
| 23                                                                                                                                                                                                                                      | 0.00 | 0.011 | 0.098 | 0.147 |  |  |  |  |
| 24                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.077 |       |  |  |  |  |
| 25                                                                                                                                                                                                                                      | 0.00 | 0.011 | 0.090 | 0.135 |  |  |  |  |
| 26                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.071 |       |  |  |  |  |
| 27                                                                                                                                                                                                                                      | 0.00 | 0.001 | 0.083 | 0.124 |  |  |  |  |
| 28                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.066 |       |  |  |  |  |
| 29                                                                                                                                                                                                                                      | 0.01 | 0.011 | 0.078 | 0.117 |  |  |  |  |
| 30                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.061 |       |  |  |  |  |
| 31                                                                                                                                                                                                                                      | 0.01 | 0.010 | 0.073 | 0.109 |  |  |  |  |
| 32                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.058 |       |  |  |  |  |
| 33                                                                                                                                                                                                                                      | 0.00 | 0.001 | 0.068 | 0.102 |  |  |  |  |
| 34                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.054 |       |  |  |  |  |
| 35                                                                                                                                                                                                                                      | 0.01 | 0.010 | 0.064 | 0.096 |  |  |  |  |
| 36                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.051 |       |  |  |  |  |
| 37                                                                                                                                                                                                                                      | 0.01 | 0.009 | 0.061 | 0.091 |  |  |  |  |
| 38                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.048 |       |  |  |  |  |
| 39                                                                                                                                                                                                                                      | 0.00 | 0.001 | 0.058 | 0.087 |  |  |  |  |
| 40                                                                                                                                                                                                                                      | 0.00 | 0.000 | 0.046 |       |  |  |  |  |
| Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below. |      |       |       |       |  |  |  |  |



MATERIALS & SAFETY - R&D

TR 31315

page 12 of 18

| Power Quality – Voltage fluctuations and Flicker: These tests should be undertaken in                                                                                                                                                                                                                                                                                                                                       |                                                                |         |                  |                 |        |           |                  |                 |                     |           |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------|------------------|-----------------|--------|-----------|------------------|-----------------|---------------------|-----------|----------------|
| accordance with EREC G98/NI Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous).                                                                                                                                                                                                                                                                                                                        |                                                                |         |                  |                 |        |           |                  |                 |                     |           |                |
| (Synchronous                                                                                                                                                                                                                                                                                                                                                                                                                | Sj.<br>Starti                                                  | na      |                  | ⊺s <sup>.</sup> | toppi  | ina       |                  | Bur             | nning               |           |                |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                     | d <sub>max</sub>                                               | d       | d <sub>(t)</sub> | d               |        | d         | d <sub>(t)</sub> | P <sub>st</sub> | P <sub>µ</sub> 2 ho |           | urs            |
| Measured<br>Values at<br>test<br>impedance                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                              | 0       | -                | 1.(             | 02     | 0.97      | -                | 0.02            | 2                   | 0.089     |                |
| Normalised<br>to standard<br>impedance                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                              | 0       | -                | 1.(             | 02     | 0.97      | -                | 0.02            | 2                   | 0.089     |                |
| Normalised<br>to required<br>maximum<br>impedance                                                                                                                                                                                                                                                                                                                                                                           | -                                                              | -       | -                | -               |        | -         | -                | -               |                     | -         |                |
| Limits set<br>under BS EN<br>61000-3-11                                                                                                                                                                                                                                                                                                                                                                                     | 4%                                                             | 3.3%    | 3.3%             | 4%              | 6      | 3.3%      | 3.3%             | 1.0             |                     | 0.65      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |         |                  |                 |        |           |                  |                 |                     |           |                |
| Test<br>Impedance                                                                                                                                                                                                                                                                                                                                                                                                           | R                                                              |         | 0.24             |                 | Ω      |           | Х                |                 | 0.15                |           | Ω              |
| Standard<br>Impedance                                                                                                                                                                                                                                                                                                                                                                                                       | R                                                              |         | 0.24 *<br>0.4^   |                 | Ω      |           | X                | X 0.15 * 0.25^  |                     |           | Ω              |
| Maximum<br>Impedance                                                                                                                                                                                                                                                                                                                                                                                                        | R                                                              |         | -                |                 | Ω      |           | Х                |                 | -                   |           | Ω              |
| <ul> <li>* Applies to three phase and split single phase Micro-generators.</li> <li>^ Applies to single phase Micro-generators and Micro-generators using two phases on a three phase system.</li> <li>For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.</li> </ul> |                                                                |         |                  |                 |        |           |                  |                 |                     |           |                |
| Normalised va<br>point.                                                                                                                                                                                                                                                                                                                                                                                                     | alue = N                                                       | leasure | d value*re       | fere            | nce so | ource res | sistance/m       | ıeasur          | ed sou              | rce resis | stance at test |
| Single phase ι                                                                                                                                                                                                                                                                                                                                                                                                              | Single phase units reference source resistance is 0.4 $\Omega$ |         |                  |                 |        |           |                  |                 |                     |           |                |

Two phase units in a three phase system reference source resistance is 0.4  $\boldsymbol{\Omega}.$ 

Two phase units in a split phase system reference source resistance is 0.24  $\boldsymbol{\Omega}.$ 

Three phase units reference source resistance is 0.24  $\Omega$ .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

| Test start    | 12:21 | Test end                                                             | 14:21 | 21.12.2020 |
|---------------|-------|----------------------------------------------------------------------|-------|------------|
| Test location |       | aboratories, Fronius Internationa<br>is Str 1, A-4600 Wels-Thalheim, | ,     |            |

@BCL@FC088B8B.doc



MATERIALS & SAFETY - R&D

TR 31315

page 13 of 18

| <b>Power quality – DC injection:</b> This test should be carried out in accordance with EN 50438 Annex D.3.10 |         |         |         |         |  |  |
|---------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|--|--|
| Test power level                                                                                              | 20%     | 50%     | 75%     | 100%    |  |  |
| Recorded value in Amps                                                                                        | 0,0074  | 0,0068  | 0,0043  | 0,0027  |  |  |
| as % of rated AC current                                                                                      | 0,02175 | 0,02175 | 0,02175 | 0,02175 |  |  |
| Limit                                                                                                         | 0.25%   | 0.25%   | 0.25%   | 0.25%   |  |  |

**Power Quality – Power factor**: This test shall be carried out in accordance with EN 50538 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within  $\pm 1.5\%$  of the stated level during the test.

|                                       | 216.2 V | 230 V | 253 V |
|---------------------------------------|---------|-------|-------|
| 20% of <b>Registered</b><br>Capacity  | 1.00    | 1.00  | 1.00  |
| 50% of <b>Registered</b><br>Capacity  | 1.00    | 1.00  | 1.00  |
| 75% of <b>Registered</b><br>Capacity  | 1.00    | 1.00  | 1.00  |
| 100% of <b>Registered</b><br>Capacity | 1.00    | 1.00  | 1.00  |
| Limit leading                         | >0.95   | >0.95 | >0.95 |
| Limit lagging                         | >0.98   | >0.98 | >0.98 |



will not trip in error.

### ENA Engineering Recommendation G98/NI Issue 1 – 2019

#### MATERIALS & SAFETY - R&D

TR 31315

page 14 of 18

**Protection – Frequency tests:** These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98/NI Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous)

| Function         | Setting                                                                                                                                                                                                                                                                                                                                                                       |               | Trip test |               | "No trip tests     | 19              |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|---------------|--------------------|-----------------|
|                  | Frequency                                                                                                                                                                                                                                                                                                                                                                     | Time<br>delay | Frequency | Time<br>delay | Frequency<br>/time | Confirm no trip |
| U/F              | 48.0 Hz                                                                                                                                                                                                                                                                                                                                                                       | 0.5 s         | 48.001Hz  | 0.540s        | 48.2 Hz<br>25 s    | Confirmed       |
|                  |                                                                                                                                                                                                                                                                                                                                                                               |               |           |               | 47.8 Hz<br>0.45 s  | Confirmed       |
| O/F stage 1      | 52Hz                                                                                                                                                                                                                                                                                                                                                                          | 1.0 s         | 52,000Hz  | 1.045s        | 51.8 Hz<br>120.0 s | Confirmed       |
|                  |                                                                                                                                                                                                                                                                                                                                                                               |               |           |               | 52.2 Hz<br>0.98 s  | Confirmed       |
| a larger deviati | Note. For frequency trip tests the frequency required to trip is the setting $\pm 0.1$ Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting $\pm 0.2$ Hz and for the relevant times as shown in the table above to ensure that the protection |               |           |               |                    |                 |

| 50438 Anr   | nex D.2.3 a             | nd the no     |         |               |                  | ordance with EN<br>1.2.2 ( <b>Inverter</b> |
|-------------|-------------------------|---------------|---------|---------------|------------------|--------------------------------------------|
| Function    | ction Setting Trip test |               |         |               | "No trip tes     | ts"                                        |
|             | Voltage                 | Time<br>delay | Voltage | Time<br>delay | Voltage<br>/time | Confirm no trip                            |
| U/V stage 1 | 195.5 V                 | 3 s           | 195.77V | 3.042s        | 199.5 V<br>5.0 s | Confirmed                                  |
| U/V stage 2 | 138 V                   | 2 s           | 138.14V | 2.045s        | 142 V<br>2.5 s   |                                            |
|             |                         |               |         |               | 134 V<br>1.98 s  | Confirmed                                  |
| O/V         | 253V                    | 0.5 s         | 253.24V | 0.543s        | 249 V<br>5.0 s   | Confirmed                                  |
|             |                         |               |         |               | 257 V<br>0.45 s  | Confirmed                                  |

deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting  $\pm 4$  V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.



# **ENA Engineering Recommendation G98/NI**

Issue 1 – 2019

| MATERIALS & S | SAFETY - R&D |
|---------------|--------------|
|---------------|--------------|

#### TR 31315

page 15 of 18

| To be carried out a                                                | t three output p                 | ower levels w                    | ith a tolerance                  | of plus or minu                   | us 5% in Test F                   | Power levels.                     |
|--------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| Test Power                                                         | 10%                              | 55%                              | 100%                             | 10%                               | 55%                               | 100%                              |
| Balancing load on<br>islanded network                              | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity |
| Trip time. Limit is 0.5 seconds                                    |                                  |                                  |                                  |                                   |                                   |                                   |
| For Multi phase                                                    | Micro-gene                       | rators confir                    | m that the o                     | device shuts                      | down corre                        | ctly after the                    |
| removal of a sing                                                  | le fuse as we                    | II as operation                  | n of all phase                   | S.                                |                                   | -                                 |
| Test Power                                                         | 10%                              | 55%                              | 100%                             | 10%                               | 55%                               | 100%                              |
| Balancing load on<br>islanded network                              | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity |
| Trip time. Ph1                                                     |                                  |                                  |                                  |                                   |                                   |                                   |
| fuse removed                                                       |                                  |                                  |                                  |                                   |                                   |                                   |
| Test Power                                                         | 10%                              | 55%                              | 100%                             | 10%                               | 55%                               | 100%                              |
| Balancing load on<br>islanded network                              | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity |
| Trip time. Ph2                                                     |                                  |                                  |                                  |                                   |                                   |                                   |
| fuse removed                                                       |                                  |                                  |                                  |                                   |                                   |                                   |
| Test Power                                                         | 10%                              | 55%                              | 100%                             | 10%                               | 55%                               | 100%                              |
| Balancing load on<br>islanded network                              | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 95% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity | 105% of<br>Registered<br>Capacity |
| Trip time. Ph3                                                     |                                  |                                  |                                  |                                   |                                   |                                   |
| fuse removed                                                       |                                  |                                  |                                  |                                   |                                   |                                   |
| Note for technolog<br>establishing that th<br>1.0 s for these tech | e trip occurred                  |                                  |                                  |                                   |                                   |                                   |
| Indicate additiona                                                 | al shut down t                   | ime included                     | in above resu                    | ults.                             |                                   | m                                 |
| For <b>Inverters</b> tes following table.                          | sted to BS EN                    | N 62116 the                      | following sub                    | set of tests                      | should be re                      | corded in the                     |
| Test Power and                                                     | 33%                              | 66%                              | 100%                             | 33%                               | 66%                               | 100%                              |
| imbalance                                                          | -5% Q                            | -5% Q                            | -5% P                            | +5% Q                             | +5% Q                             | +5% P                             |
|                                                                    | Test 22                          | Test 12                          | Test 5                           | Test 31                           | Test 21                           | Test 10                           |
|                                                                    |                                  |                                  |                                  |                                   |                                   |                                   |



MATERIALS & SAFETY - R&D

TR 31315

page 16 of 18

| <b>Protection – Frequency change, Vector Shift Stability test:</b> This test should be carried out in accordance with EREC G98/NI Annex A1 A.1.2.6 ( <b>Inverter</b> connected) or Annex A2 A.2.2.6 (Synchronous). |                    |             |                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|-----------------|--|--|
|                                                                                                                                                                                                                    | Start<br>Frequency | Change      | Confirm no trip |  |  |
| Positive Vector Shift                                                                                                                                                                                              | 49.5Hz             | +50 degrees | Confirmed       |  |  |
| Negative Vector Shift                                                                                                                                                                                              | 50.5Hz             | -50 degrees | Confirmed       |  |  |

| <b>Protection – Frequency change, RoCoF Stability test:</b> The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 ( <b>Inverter</b> connected) or Annex A2 A.2.2.6 (Synchronous). |                         |               |                 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|-----------------|--|--|--|
| Ramp range                                                                                                                                                                                                | Test frequency ramp:    | Test Duration | Confirm no trip |  |  |  |
| 49.0 Hz to 51.0Hz                                                                                                                                                                                         | +0.95 Hzs <sup>-1</sup> | 2.1 s         | Confirmed       |  |  |  |
| 51.0 Hz to 49.0Hz                                                                                                                                                                                         | -0.95 Hzs <sup>-1</sup> | 2.1 s         | Confirmed       |  |  |  |

| <b>Limited Frequency S</b><br>carried out in accorda<br>frequency. The test sho<br>Hz and <b>Droop</b> of 4%. | nce with EN                        | 50438 Anne | x D.3.3 Power respon | nse to over-                |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------|------------|----------------------|-----------------------------|--|
| Test sequence at<br>Registered Capacity<br>>80%                                                               | Measured<br>Active Power<br>Output | Frequency  | Primary Power Source | Active<br>Power<br>Gradient |  |
| Step a) 50.00 Hz ±0.01 Hz                                                                                     | 6067W                              | 50.00Hz    |                      |                             |  |
| Step b) 50.25 Hz ±0.05 Hz                                                                                     | 5946W                              | 50.25Hz    |                      |                             |  |
| Step c) 50.70 Hz ±0.10 Hz                                                                                     | 4569W                              | 50.70Hz    |                      |                             |  |
| Step d) 51.15 Hz ±0.05 Hz                                                                                     | 3199W                              | 51.15Hz    | 6.3kW                | 50%/Hz                      |  |
| Step e) 50.70 Hz ±0.10 Hz                                                                                     | 4569W                              | 50.70Hz    |                      |                             |  |
| Step f) 50.25 Hz ±0.05 Hz                                                                                     | 5946W                              | 50.25Hz    |                      |                             |  |
| Step g) 50.00 Hz ±0.01 Hz                                                                                     | 6067W                              | 50.00Hz    |                      |                             |  |
| Test sequence at<br>Registered Capacity 40%<br>- 60%                                                          | Measured<br>Active Power<br>Output | Frequency  | Primary Power Source | Active<br>Power<br>Gradient |  |
| Step a) 50.00 Hz ±0.01 Hz                                                                                     | 3094W                              | 50.00Hz    |                      |                             |  |
| Step b) 50.25 Hz ±0.05 Hz                                                                                     | 3003W                              | 50.25Hz    |                      |                             |  |
| Step c) 50.70 Hz ±0.10 Hz                                                                                     | 2307W                              | 50.70Hz    |                      |                             |  |
| Step d) 51.15 Hz ±0.05 Hz                                                                                     | 1613W                              | 51.15Hz    | 3.1kW                | 50%/Hz                      |  |
| Step e) 50.70 Hz ±0.10 Hz                                                                                     | 2307W                              | 50.70Hz    | 1                    |                             |  |
| Step f) 50.25 Hz ±0.05 Hz                                                                                     | 3003W                              | 50.25Hz    | 1                    |                             |  |
| Step g) 50.00 Hz ±0.01 Hz                                                                                     | 3094W                              | 50.00Hz    | 1                    |                             |  |
| Steps as defined in EN 5043                                                                                   | 8                                  |            |                      |                             |  |



MATERIALS & SAFETY - R&D

TR 31315

page 17 of 18

| <b>Power output with falling frequency test:</b> This test should be carried out in accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency and under steady state conditions. |                                 |                    |                      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|----------------------|--|--|--|--|
| Test sequence                                                                                                                                                                                       | Measured Active<br>Power Output | Frequency          | Primary power source |  |  |  |  |
| Test a) 50 Hz ± 0.01 Hz                                                                                                                                                                             | 6000W                           | 50Hz               | 6.12kW               |  |  |  |  |
| Test b) Point between<br>49.5 Hz and 49.6 Hz                                                                                                                                                        | 6000W                           | 49.55Hz            | 6.12kW               |  |  |  |  |
| Test c) Point between<br>47.5 Hz and 47.6 Hz                                                                                                                                                        | 6000W                           | 47.55Hz            | 6.12kW               |  |  |  |  |
| NOTE: The operating point                                                                                                                                                                           | in Test (b) and (c) shall b     | e maintained for a | at least 5 minutes   |  |  |  |  |

| Re-connection timer.                                                                      |                                                                                 |  |                                                        |                 |                    |            |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--------------------------------------------------------|-----------------|--------------------|------------|
| Test should prove that the reconnection sequence starts after a minimum delay of 60 s for |                                                                                 |  |                                                        |                 |                    |            |
| restoration c                                                                             | restoration of voltage and frequency to within the stage 1 settings of Table 2. |  |                                                        |                 |                    |            |
| Time delay                                                                                | Measured                                                                        |  | Checks on no reconnection when voltage or frequency is |                 |                    |            |
| setting                                                                                   | delay                                                                           |  | brought to just                                        | outside stage 1 | limits of table 2. |            |
| 60.0s                                                                                     | 99.2s                                                                           |  | At 257.0 V                                             | At 191.5 V      | At 47.9 Hz         | At 52.1 Hz |
|                                                                                           | Confirmation that the <b>Micro-generator</b> does not re-connect.               |  |                                                        | Confirmed       | Confirmed          | Confirmed  |

| <b>Fault level contribution</b> : These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 ( <b>Inverter</b> connected) and Annex A2 A.2.3.4 (Synchronous). |                 |             |                     |       |            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|---------------------|-------|------------|--|
|                                                                                                                                                                                  |                 |             |                     |       |            |  |
| Parameter                                                                                                                                                                        | Symbol          | Value       | Time<br>after fault | Volts | Amps       |  |
| Peak Short Circuit current                                                                                                                                                       | i <sub>p</sub>  |             | 20ms                | 4.24  | 49.4       |  |
| Initial Value of aperiodic<br>current                                                                                                                                            | A               |             | 100ms               | 3.6   | 22.4       |  |
| Initial symmetrical short-<br>circuit current*                                                                                                                                   | I <sub>k</sub>  |             | 250ms               | 3.43  | 14.3       |  |
| Decaying (aperiodic)<br>component of short circuit<br>current*                                                                                                                   | i <sub>DC</sub> |             | 500ms               | 3.4   | 10.3       |  |
| Reactance/Resistance Ratio<br>of source*                                                                                                                                         | ×/R             |             | Time to<br>trip     | 0.110 | In seconds |  |
|                                                                                                                                                                                  | / <sub>R</sub>  | achines the | trip                |       |            |  |

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

\* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

| Logic Interface.                                                                                                                                                                                                                    | Yes |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <b>Self-Monitoring solid state switching:</b> No specified test requirements. Refer to EREC G98/NI Annex A1 A.1.3.6 ( <b>Inverter</b> connected).                                                                                   | NA  |
| It has been verified that in the event of the solid state switching device failing to disconnect the <b>Micro-generator</b> , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s. |     |

@BCL@FC088B8B.doc



#### MATERIALS & SAFETY - R&D

#### TR 31315

page 18 of 18

Additional comments