

ENA Engineering Recommendation G98/NI

Issue 1 - 2019

MATERIALS & SAFETY - R&D

TR 31314

page 1 of 18

FORM C TYPE TEST VERIFICATION REPORT

Type Approval and **Manufacturer** declaration of compliance with the requirements of G98/NI.

This form should be used when making a Type Test submission to the Energy Networks Association (ENA).

If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted.

Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to NIE Networks, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98/NI.

Manufacturer's reference number			Fronius Symo GEN24		
Micro-generato	r technolo	ogy	transformerless		
Manufacturer n	ame		Froni	us International Gr	mbH
Address				ter Fronius Str 1 Wels-Thalheim, A	Austria
Tel	+43-724	2-241-0		Fax	+43-7242-241-224
E:mail	pv@fron	ius.com		Web site	www.fronius.com
				Connection O	ption
Registered Cap	acity.		kW single phase, single, split or three phase system		
use separate sh more than one		8	kW three phase		
connection optic	on.		kW two phases in three phase system		
			kW two phases split phase system		
Type Tested re this document,	ference n prior to s	umber will be manufa	actured that no	and tested to en	ed by the company with the above sure that they perform as stated in as are required to ensure that the
Signed FRONUS INTERNATIONAL GABH Gunter Frontier State of the State of			ehalf of	Fronius International GmbH	
Note that testing house.	g can be	done by the Manufa	acture	r of an individual	component or by an external test

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

MATERIALS & SAFETY - R&D

page 2 of 18

Operating Range: This test should be carried out as specified in EN 50438 D.3.1.
Active Power shall be recorded every second. The tests will verify that the Micro-generator can operate within the required ranges for the specified period of time.
The Interface Protection shall be disabled during the tests.
In case of a PV Micro-generator the PV primary source may be replaced by a DC source.
In case of a full converter Micro-generator (e.g. wind) the primary source and the prime mover Inverter /rectifier may be replaced by a DC source.
In case of a DFIG Micro-generator the mechanical drive system may be replaced by a test bench motor.
Test 1
Voltage = 85% of nominal (195.5 V)
Frequency = 47.5 Hz
Power factor = 1
Period of test 90 minutes
Test 2
Voltage = 110% of nominal (253 V).
Frequency = 51.5 Hz
Power factor = 1
Period of test 90 minutes
Test 3
Voltage = 110% of nominal (253 V).
Frequency = 52.0 Hz
Power factor = 1
Period of test 15 minutes
Remark: During the tests 1, 2 and 3 the unit does not disconnect, tests have been passed.

TR 31314

MATERIALS & SAFETY - R&D

TR 31314

page 3 of 18

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2 Phase 1							
Micro-ger	nerator rating pe	er phase (rpp)	2,758	kW			
Harmonic	At 45-55% of Cap a	f Registered acity		Registered acity			
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above	
2	0.001		0.003		1.080		
3	0.002		0.001		2.300		
4	0.002		0.002		0.430		
5	0.001		0.001		1.140		
6	0.000		0.001		0.300		
7	0.003		0.003		0.770		
8	0.000		0.001		0.230		
9	0.001		0.001		0.400		
10	0.000		0.000		0.184		
11	0.017		0.013		0.330		
12	0.000		0.000		0.153		
13	0.015		0.011		0.210		
14	0.000		0.000		0.131		
15	0.000		0.000		0.150		
16	0.000		0.000		0.115		
17	0.012		0.011		0.132		
18	0.000		0.000		0.102		
19	0.011		0.011		0.118		

MATERIA	LS & SAFETY -	R&D	TR 31314		page 4 of 18	
20	0.000		0.000		0.092	
21	0.000		0.001		0.107	0.160

ENA Engineering Recommendation G98/NI

Issue 1 - 2019

MATERIALS & SAFETY - R&D

TR 31314

page 5 of 18

22	0.000	0.000	0.084					
23	0.008	0.011	0.098	0.147				
24	0.000	0.000	0.077					
25	0.007	0.010	0.090	0.135				
26	0.000	0.000	0.071					
27	0.000	0.000	0.083	0.124				
28	0.000	0.000	0.066					
29	0.005	0.009	0.078	0.117				
30	0.000	0.000	0.061					
31	0.004	0.010	0.073	0.109				
32	0.000	0.000	0.058					
33	0.000	0.001	0.068	0.102				
34	0.001	0.000	0.054					
35	0.004	0.011	0.064	0.096				
36	0.000	0.000	0.051					
37	0.005	0.010	0.061	0.091				
38	0.000	0.000	0.048					
39	0.001	0.001	0.058	0.087				
40	0.001	0.001	0.046					
these hig	Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.							

MATERIALS & SAFETY - R&D

TR 31314

page 6 of 18

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2 Phase 2								
Micro-ger	nerator rating pe	er phase (rpp)	2,727	kW				
Harmonic		f Registered acity		Registered acity				
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above		
2	0.001		0.002		1.080			
3	0.004		0.001		2.300			
4	0.001		0.001		0.430			
5	0.002		0.002		1.140			
6	0.000		0.001		0.300			
7	0.002		0.003		0.770			
8	0.001		0.000		0.230			
9	0.001		0.001		0.400			
10	0.000		0.000		0.184			
11	0.017		0.013		0.330			
12	0.000		0.000		0.153			
13	0.015		0.012		0.210			
14	0.001		0.000		0.131			
15	0.000		0.001		0.150			
16	0.000		0.000		0.115			
17	0.013		0.012		0.132			
18	0.000		0.000		0.102			
19	0.011		0.011		0.118			

MATERIA	LS & SAFETY	R&D	TR 31314		page 7 of 18		
20	0.000		0.000		0.092		
21	0.001		0.000		0.107	0.160	

MATERIALS & SAFETY - R&D

TR 31314

page 8 of 18

	_							
22	0.000	0.000	0.084					
23	0.008	0.011	0.098	0.147				
24	0.000	0.000	0.077					
25	0.006	0.011	0.090	0.135				
26	0.000	0.000	0.071					
27	0.001	0.001	0.083	0.124				
28	0.000	0.000	0.066					
29	0.005	0.011	0.078	0.117				
30	0.000	0.000	0.061					
31	0.004	0.010	0.073	0.109				
32	0.000	0.000	0.058					
33	0.000	0.001	0.068	0.102				
34	0.000	0.000	0.054					
35	0.005	0.011	0.064	0.096				
36	0.000	0.000	0.051					
37	0.005	0.010	0.061	0.091				
38	0.001	0.000	0.048					
39	0.001	0.001	0.058	0.087				
40	0.000	0.000	0.046					
these hig	Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.							

MATERIALS & SAFETY - R&D

TR 31314

page 9 of 18

Power Quality – Harmonics: These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of **Registered Capacity**. The test requirements are specified in Annex A1 A.1.3.1 (**Inverter** connected) or Annex A2 A.2.3.1 (Synchronous).

Micro-generator tested to BS EN 61000-3-2 Phase 3							
Micro-ger	nerator rating pe	er phase (rpp)	2,731	kW			
Harmonic		f Registered acity		Registered acity			
	Measured Value MV in Amps		Measured Value MV in Amps		Limit in BS EN 61000- 3-2 in Amps	Higher limit for odd harmonics 21 and above	
2	0.000		0.002		1.080		
3	0.001		0.003		2.300		
4	0.001		0.004		0.430		
5	0.001		0.001		1.140		
6	0.000		0.000		0.300		
7	0.003		0.003		0.770		
8	0.001		0.001		0.230		
9	0.001		0.001		0.400		
10	0.000		0.001		0.184		
11	0.017		0.013		0.330		
12	0.000		0.001		0.153		
13	0.015		0.011		0.210		
14	0.001		0.000		0.131		
15	0.000		0.001		0.150		
16	0.000		0.000		0.115		
17	0.013		0.012		0.132		
18	0.000		0.001		0.102		
19	0.011		0.011		0.118		

MATERIA	LS & SAFETY	R&D	TR 31314		page 10 of 18		
20	0.000		0.000		0.092		
21	0.001		0.001		0.107	0.160	

MATERIALS & SAFETY - R&D

TR 31314

page 11 of 18

		1 1						
22	0.000	0.001	0.084					
23	0.008	0.011	0.098	0.147				
24	0.000	0.000	0.077					
25	0.006	0.010	0.090	0.135				
26	0.000	0.000	0.071					
27	0.001	0.000	0.083	0.124				
28	0.000	0.000	0.066					
29	0.005	0.010	0.078	0.117				
30	0.000	0.000	0.061					
31	0.004	0.010	0.073	0.109				
32	0.000	0.000	0.058					
33	0.001	0.001	0.068	0.102				
34	0.000	0.000	0.054					
35	0.004	0.011	0.064	0.096				
36	0.000	0.000	0.051					
37	0.005	0.010	0.061	0.091				
38	0.001	0.000	0.048					
39	0.000	0.001	0.058	0.087				
40	0.000	0.000	0.046					
these hig	Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below.							

MATERIALS & SAFETY - R&D

TR 31314

page 12 of 18

Power Quality - Voltage fluctuations and Flicker: These tests should be undertaken in accordance with EREC G98/NI Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous) Starting Stopping Running d_{max} $d_{(\underline{t})}$ P_{st} d_c d_{max} $d_{(t)}$ P₁2 hours d Measured 0 0 1.35 1.25 0.028 0.038 -Values at test impedance Normalised 0 0 1.35 1.25 0.028 0.038 to standard impedance Normalised ----to required maximum impedance Limits set 4% 3.3% 3.3% 4% 3.3% 3.3% 1.0 0.65 under BS EN 61000-3-11 R Test 0.24 Х 0.15 Ω Ω Impedance R Х 0.24 * 0.15 * Standard Ω Ω Impedance 0.4^ 0.25^ Maximum R Х Ω Ω _ Impedance

* Applies to three phase and split single phase Micro-generators.

^ Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is 0.4 Ω .

Two phase units in a split phase system reference source resistance is 0.24 Ω .

Three phase units reference source resistance is 0.24 Ω .

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below.

Test start	10:14	Test end	12:14	21.12.2020
Test location		aboratories, Fronius Internationa is Str 1, A-4600 Wels-Thalheim,		

@BCL@400A7691.doc

MATERIALS & SAFETY - R&D

TR 31314

page 13 of 18

Power quality – DC injection: This test should be carried out in accordance with EN 50438 Annex D.3.10					
Test power level	20%	50%	75%	100%	
Recorded value in Amps	0.0063	0.0037	0.0027	0.0066	
as % of rated AC current	0.029	0.029	0.029	0.029	
Limit	0.25%	0.25%	0.25%	0.25%	

Power Quality – Power factor: This test shall be carried out in accordance with EN 50538 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test.

	216.2 V	230 V	253 V
20% of Registered Capacity	1.00	1.00	1.00
50% of Registered Capacity	1.00	1.00	1.00
75% of Registered Capacity	1.00	1.00	1.00
100% of Registered Capacity	1.00	1.00	1.00
Limit leading	>0.95	>0.95	>0.95
Limit lagging	>0.98	>0.98	>0.98

will not trip in error.

ENA Engineering Recommendation G98/NI

Issue 1 - 2019

MATERIALS & SAFETY - R&D

TR 31314

page 14 of 18

Protection – Frequency tests: These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98/NI Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous)

Function	Setting		Trip test		"No trip tests	19	
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip	
U/F	48.0 Hz	0.5 s	48.001Hz	0.540s	48.2 Hz 25 s	Confirmed	
					47.8 Hz 0.45 s	Confirmed	
O/F stage 1	52Hz	1.0 s	52,000Hz	1.045s	51.8 Hz 120.0 s	Confirmed	
					52.2 Hz 0.98 s	Confirmed	
a larger deviati	Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection						

Protection – Voltage tests: These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98/NI Annex A1 A.1.2.2 (Inverter connected) or Annex A2 A.2.2.2 (Synchronous)						
Function	Setting		Trip test		"No trip test	s"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V stage 1	195.5 V	3 s	195.77V	3.042s	199.5 V 5.0 s	Confirmed
U/V stage 2	138 V	2 s	138.14V	2.045s	142 V 2.5 s	
					134 V 1.98 s	Confirmed
O/V	253V	0.5 s	253.24V	0.543s	249 V 5.0 s	Confirmed
					257 V 0.45 s	Confirmed measured at a larger

deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

ENA Engineering Recommendation G98/NI

Issue 1 – 2019

TR 31314

page 15 of 18

To be carried out a	t three output p	ower levels w	ith a tolerance	of plus or minu	us 5% in Test F	Power levels.
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Limit is 0.5 seconds						
For Multi phase	Micro-gene	rators confir	m that the o	device shuts	down corre	ctly after the
removal of a sing	le fuse as we	II as operation				-
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph1						
fuse removed	400/	550/	4000/	4.00/	550/	4000/
Test Power	10%	55% 95% of	100% 95% of	10% 105% of	55% 105% of	100% 105% of
Balancing load on islanded network	95% of Registered Capacity	Registered Capacity	Registered Capacity	Registered Capacity	Registered Capacity	Registered Capacity
Trip time. Ph2						
fuse removed						
Test Power	10%	55%	100%	10%	55%	100%
Balancing load on islanded network	95% of Registered Capacity	95% of Registered Capacity	95% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity	105% of Registered Capacity
Trip time. Ph3						
fuse removed						
Note for technolog establishing that th 1.0 s for these tech	e trip occurred					
Indicate additiona	al shut down t	ime included	in above resu	ults.		m
For Inverters tes following table.	sted to BS EN	N 62116 the	following sub	set of tests	should be re	corded in the
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip Time. Limit is	186.4 ms	163.6 ms	404.7 ms	208.4 ms	169.9 ms	418.7 ms

Negative Vector Shift

ENA Engineering Recommendation G98/NI Issue 1 – 2019

Confirmed

MATERIALS & SAFETY - R&D

50.5Hz

TR 31314

page 16 of 18

Protection – Freque	ncy change,	Vector Shift	Stability test: This test should be			
carried out in accordance with EREC G98/NI Annex A1 A.1.2.6 (Inverter connected) or						
Annex A2 A.2.2.6 (Syr	nchronous).					
	Start	Change	Confirm no trip			
	Frequency					
Positive Vector Shift	49.5Hz	+50 degrees	Confirmed			

-50 degrees

Protection – Frequency change, RoCoF Stability test: The requirement is specified in section 11.3, test procedure in Annex A.1.2.6 (Inverter connected) or Annex A2 A.2.2.6 (Synchronous).							
Ramp range	Test frequency ramp:	Test Duration	Confirm no trip				
49.0 Hz to 51.0Hz	+0.95 Hzs ⁻¹	2.1 s	Confirmed				
51.0 Hz to 49.0Hz	-0.95 Hzs ⁻¹	2.1 s	Confirmed				

Limited Frequency S carried out in accorda	nce with EN	50438 Anne	x D.3.3 Power respon	nse to over-
frequency. The test sho Hz and Droop of 4%.	uld be carried o	out using the	specific threshold frequ	ency of 50.2
Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	8051W	50.00Hz		
Step b) 50.25 Hz ±0.05 Hz	7905W	50.25Hz		
Step c) 50.70 Hz ±0.10 Hz	6075W	50.70Hz		
Step d) 51.15 Hz ±0.05 Hz	4255W	51.15Hz	8.3kW	50%/Hz
Step e) 50.70 Hz ±0.10 Hz	6075W	50.70Hz		
Step f) 50.25 Hz ±0.05 Hz	7905W	50.25Hz		
Step g) 50.00 Hz ±0.01 Hz	8051W	50.00Hz		
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	4054W	50.00Hz		
Step b) 50.25 Hz ±0.05 Hz	3960W	50.25Hz		
Step c) 50.70 Hz ±0.10 Hz	3042W	50.70Hz		
Step d) 51.15 Hz ±0.05 Hz	2129W	51.15Hz	4.1kW	50%/Hz
Step e) 50.70 Hz ±0.10 Hz	3042W	50.70Hz	1	
Step f) 50.25 Hz ±0.05 Hz	3960W	50.25Hz	1	
Step g) 50.00 Hz ±0.01 Hz	4054W	50.00Hz	1	
Steps as defined in EN 5043	8	1		

MATERIALS & SAFETY - R&D

TR 31314

page 17 of 18

Power output with falling frequency test: This test should be carried out in accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency and under steady state conditions.								
Test sequence Measured Active Frequency Primary power source Power Output Output Primary power source Primary power source								
Test a) 50 Hz ± 0.01 Hz	8000W	50Hz	8.2kW					
Test b) Point between 49.5 Hz and 49.6 Hz	8000W	49.55Hz	8.2kW					
Test c) Point between 47.5 Hz and 47.6 Hz	8000W	47.55Hz	8.2kW					
NOTE: The operating point	in Test (b) and (c) shall b	e maintained for a	at least 5 minutes					

Re-connection timer.						
Test should	Test should prove that the reconnection sequence starts after a minimum delay of 60 s for					
restoration o	of voltage and f	requency to	within the stag	e 1 settings of	Table 2.	
Time delay	Measured				nen voltage or fre	
setting	delay		brought to just	outside stage 1	limits of table 2.	
60.0s	99.2s	99.2s At 257.0 V At 191.5 V At 47.9 Hz At 52.1 Hz				
Confirmation that the Micro-generator does not re-connect.			Confirmed	Confirmed	Confirmed	Confirmed

Fault level contribution: These tests shall be carried out in accordance with EREC							
G98 Annex A1 A.1.3.5 (Inverter connected) and Annex A2 A.2.3.4 (Synchronous).							
For machines with electro-mag	gnetic output		For Inverter	output			
Parameter	Symbol	Value	Time after fault	Volts	Amps		
Peak Short Circuit current	i _p		20ms	4.24	49.4		
Initial Value of aperiodic current	A		100ms	3.6	22.4		
Initial symmetrical short- circuit current*	 k		250ms	3.43	14.3		
Decaying (aperiodic) component of short circuit current*	i _{DC}		500ms	3.4	10.3		
Reactance/Resistance Ratio of source*	×/R		Time to trip	0.110	In seconds		
	/ _R		trip				

For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals.

* Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot

Logic Interface.	Yes
Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98/NI Annex A1 A.1.3.6 (Inverter connected).	NA
It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s.	

@BCL@400A7691.doc

MATERIALS & SAFETY - R&D

TR 31314

page 18 of 18

Additional comments