

MATERIALS & SAFETY - R&D

TR 28373

page 1 of 8

Backup: Fronius Primo UK

FORM A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

This form should be used by the **Manufacturer** to demonstrate and declare compliance with the requirements of EREC G99. The form can be used in a variety of ways as detailed below:

1. To obtain Fully Type Tested status

The **Manufacturer** can use this form to obtain **Fully Type Tested** status for a **Power Generating Module** by registering this completed form with the Energy Networks Association (ENA) Type Test Verification Report Register.

Note:

Within this Form A2-3 the term Power Park Module will be used but its meaning can be interpreted within Form A2-3 to mean Power Park Module, Generating Unit or Inverter as appropriate for the context. However, note that compliance must be demonstrated at the Power Park Module level.

If the Power Generating Module is Fully Type Tested and registered with the Energy Networks Association (ENA) Type Test Verification Report Register, the Installation Document (Form A3) should include the Manufacturer's reference number (the Product ID), and this form does not need to be submitted.

Where the Power Generating Module is not registered with the ENA Type Test Verification Report Register or is not Fully Type Tested this form (all or in parts as applicable) needs to be completed and provided to the DNO, to confirm that the Power Generating Module has been tested to satisfy all or part of the requirements of this EREC G99.

Manufacturer's reference number		Fronius Primo 6.0-1				
PGM technology		IGBT power modules, transformerless				
Manufactu	ırer name		Froni	ius Internationa	al GmbH	
Adress				nter Fronius Str Wels-Thalheir		
Tel	+43-7242-24	41-0		Fax	+43-7242-241-224	
E:mail	pv@fronius.	com		Web site	www.fronius.com	
Registered	d Capacity				6.0kW	

Manufacturer compliance declaration. - I certify that all products supplied by the company with the above **Type Tested Manufacturer's** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site **Modifications** are required to ensure that the **product** meets all the requirements of EREC G99.

Signed FRONT IN THE MONTH ON DEPART ON DEPART OF Frontius International GmbH

Government Frontius Still 1, A 450 Weis/Thalhein

Grant Frontius Still 1, A 45

Note that testing can be done by the **Manufacturer** of an individual component or by an external test house.

Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests.

MATERIALS & SAFETY - R&D

TR 28373

page 2 of 8

1. Operating Range: Five tests should be carried with the Power Generating Module operating at Registered Capacity and connected to a suitable test supply or grid simulation set. The power supplied by the primary source shall be kept stable within \pm 5 % of the apparent power value set for the entire duration of each test sequence.

Frequency, voltage and **Active Power** measurements at the output terminals of the **Power Generating Module** shall be recorded every second. The tests will verify that the **Power Generating Module** can operate within the required ranges for the specified period of time.

The Interface Protection shall be disabled during the tests.

In case of a PV **Power Park Module** the PV primary source may be replaced by a DC source. In case of a full converter **Power Park Module** (eg wind) the primary source and the prime mover **Inverter/rectifier** may be replaced by a DC source.

Test 1

Voltage = 85% of nominal (195.5 V) Frequency = 47.0 Hz Power factor = 1 Period of test 20 s

Test 2

Voltage = 85% of nominal (195.5 V).

Frequency = 47.5 Hz

Power factor = 1

Period of test 90 minutes

Test 3

Voltage = 110% of nominal (253 V).

Frequency = 51.5 Hz

Power factor = 1

Period of test 90 minutes

Test 4

Voltage = 110% of nominal (253 V).

Frequency = 52.0 Hz

Power factor = 1

Period of test 15 minutes

Test 5 RoCoF withstand

Confirm that the Power Generating Module is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs-1 as measured over a period of 500 ms. Note that this is not expected to be demonstrated on site.

Remark: During the tests 1, 2, 3, 4 and 5 the unit does not disconnect, tests have been passed.

MATERIALS & SAFETY - R&D

TR 28373

page 3 of 8

Backup: Fronius Primo UK

2. Power Quality - Harmonics:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) the test requirements are specified in Annex A.7.1.5. These tests should be carried out as specified in BS EN 61000-3-12 The results need to comply with the limits of Table 2 of BS EN 61000-3-12 for single phase equipment and Table 3 of BS EN 610000-3-12 for three phase equipment.

Power Generating Modules with emissions close to the limits laid down in BS EN 61000-3-12 may require the installation of a transformer between 2 and 4 times the rating of the **Power Generating Module** in order to accept the connection to a **Distribution Network**.

For **Power Generating Module**s of **Registered Capacity** of greater than 75 A per phase (ie 50 kW) the installation shall be designed in accordance with EREC G5.

Power Generating Module rating per phase (rpp)		6.0	kVA	Harmonic % = Measured Value (A) x 23/rating per phase (kVA)				
Harmonic	At 45-55% of Registered Capacity		100% of Regis	100% of Registered Capacity		Limit in BS EN 61000-3-12 in Amps		
	Measured Value MV in Amps		Measured Value MV in Amps		1 Phase	3 phase		
2	0.069	0.192	0.088	0.246	8%	8%		
3	0.604	1.695	0.658	1.846	21.6%	Not stated		
4	0.110	0.308	0.101	0.284	4%	4%		
5	0.397	1.115	0.478	1.341	10.7%	10.7%		
6	0.028	0.078	0.025	0.069	2.67%	2.67%		
7	0.152	0.427	0.238	0.668	7.2%	7.2%		
8	0.027	0.075	0.033	0.094	2%	2%		
9	0.174	0.487	0.263	0.737	3.8%	Not stated		
10	0.022	0.061	0.026	0.072	1.6%	1.6%		
11	0.047	0.132	0.121	0.341	3.1%	3.1%		
12	0.034	0.095	0.040	0.111	1.33%	1.33%		
13	0.108	0.303	0.166	0.465	2%	2%		
THD ¹²	0.72	4.12	0.81	2.39	23%	13%		
PWHD ¹³	0.00	0.00	0.00	0.00	23%	22%		

¹² THD = Total Harmonic Distortion

¹³ PWHD = Partial Weighted Harmonic Distortion

MATERIALS & SAFETY - R&D

TR 28373

page 4 of 8

3. Power Quality - Voltage fluctuations and Flicker:

For **Power Generating Modules** of **Registered Capacity** of less than 75 A per phase (ie 50 kW) these tests should be undertaken in accordance with Annex A.7.1.4.3. Results should be normalised to a standard source impedance, or if this results in figures above the limits set in BS EN 61000-3-11 to a suitable Maximum Impedance.

For Power Generating Modules of Registered Capacity of greater than 75 A per phase (ie 50 kW) the

installation shall be designed in accordance with EREC P28.

motaliation one	Startin				oppin	g	·v	Run	ning		
	d _{max}	d _c	d _(t)	d _{ma}		d _c	d _(t)	P _{st}		P _{it} 2 ho	ours
Measured Values at test impedance	0.40 %	1.79%		2.1	8%	2.16%		0.41		0.387	
Normalised to standard impedance	0.40 %	1.79%		2.1	8%	2.16%	5	0.41	2	0.387	
Normalised to required maximum impedance											
Limits set under BS EN 61000-3-11	4%	3.3%	3.3%	4%)	3.3%	3.3%	1.0		0.65	
											AND THE RESERVE OF TH
Test Impedance	R		0.4		Ω		Х		0.25		Ω
Standard Impedance	R		0.24 * 0.4^		Ω		Х		0.15 * 0.25^		Ω
Maximum Impedance	R				Ω		X				Ω

^{*} Applies to three phase and split single phase Power Generating Modules.

For voltage change and flicker measurements the following formula is to be used to convert the measured values to the normalised values where the power factor of the generation output is 0.98 or above.

Normalised value = Measured value*reference source resistance/measured source resistance at test point.

Single phase units reference source resistance is 0.4 Ω

Two phase units in a three phase system reference source resistance is $0.4~\Omega$.

Two phase units in a split phase system reference source resistance is 0.24Ω .

Three phase units reference source resistance is $0.24~\Omega$.

Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance.

The stopping test should be a trip from full load operation.

The duration of these tests need to conform to the particular requirements set out in the testing notes for

[^] Applies to single phase **Power Generating Module** and **Power Generating Modules** using two phases on a three phase system.

MATERIALS & SAFETY - R&D

TR 28373

page 5 of 8

the technology under test. Dates and location of the test need to be noted below.							
Test start	Test start 2019-04-01 Test end 2019-04-12						
Test location		aboratories, Fronius Internationals Str 1, A-4600 Wels-Thalheim,					

4. Power quality – DC injection: The tests should be carried out on a single **Generating Unit**. Tests are to be carried out at three defined power levels ±5%. At 230 V a 50 kW three phase **Inverter** has a current output of 217 A so DC limit is 543 mA. These tests should be undertaken in accordance with Annex A.7.1.4.4.

Test power level	10%	55%	100%
Recorded value in Amps	4.3mA	12.0mA	15.7mA
as % of rated AC current	0.016%	0.045%	0.060%
Limit	0.25%	0.25%	0.25%

5. Power Factor: The tests should be carried out on a single **Power Generating Module**. Tests are to be carried out at three voltage levels and at **Registered Capacity**. Voltage to be maintained within ±1.5% of the stated level during the test. These tests should be undertaken in accordance with Annex A.7.1.4.2.

Voltage	0.94 pu (216.2 V)	1 pu (230 V)	1.1 pu (253 V)
Measured value	1.000	1.000	1.000
Power Factor Limit	>0.95	>0.95	>0.95

6. Protection – Frequency tests: These tests should be carried out in accordance with Annex A.7.1.2.3.

Function	Setting		Trip test		"No trip tests	,,,
	Frequency	Time delay	Frequency	Time delay	Frequency /time	Confirm no trip
U/F stage 1	47.5Hz	20s	47.495Hz	20.059s	47.7Hz 30s	No trip occurred
U/F stage 2	47Hz	0.5s	46.990Hz	0.558s	47.2Hz 19.5s	No trip occurred
					46.8Hz 0.45s	No trip occurred
O/F stage 1	52Hz	0.5s	52.006Hz	0.558s	51.8Hz 120.0s	No trip occurred
i wasan in					52.2Hz 0.45s	No trip occurred

Note. For frequency trip tests the frequency required to trip is the setting \pm 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

MATERIALS & SAFETY - R&D

TR 28373

page 6 of 8

Function	Setting		Trip test		"No trip tes	ts"
	Voltage	Time delay	Voltage	Time delay	Voltage /time	Confirm no trip
U/V	0.8 pu (184V)	2.5s	183.07V	2.543s	188V 5.0s	No trip occurred
					180V 2.45s	No trip occurred
O/V stage 1	1.14 (262.2V)	1.0s	262.95V	1.041s	258.2V 5.0s	No trip occurred
O/V stage 2	1.19 (273.7V)	0.5s	273.97V	0.538s	269.7V 0.95s	No trip occurred
					277.7V 0.45s	No trip occurred

Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

8. Protection – with BS EN 621			hese tests s	should be ca	arried out in	accordance
The following sub s	et of tests sho	uld be recorde	d in the followi	ng table.		
Test Power and	33%	66%	100%	33%	66%	100%
imbalance	-5% Q	-5% Q	-5% P	+5% Q	+5% Q	+5% P
	Test 22	Test 12	Test 5	Test 31	Test 21	Test 10
Trip time	166.49ms	169.19ms	301.8ms	179.59ms	153.99ms	444.4ms
Limit is 0.5s						

Loss of Mains Protection, Vector Shift Stability test. This test should be carried out in accordance with Annex A.7.1.2.6.								
	Start Frequency	Change	Confirm no trip					
Positive Vector	49.0Hz	+50 degrees	No trip occurred					
Negative Vector	50.0Hz	-50 degrees	No trip occurred					

Loss of Mains Protection, RoCoF Stability test: This test should be carried out in accordance with Annex A.7.1.2.6.							
Ramp range	Test frequency ramp:	Test Duration	Confirm no trip				
49.0 Hz to 51.0Hz	+0.95 Hzs ⁻¹	2.1 s	No trip occurred				
51.0 Hz to 49.0Hz	-0.95 Hzs ⁻¹	2.1 s	No trip occurred				

MATERIALS & SAFETY - R&D

TR 28373

page 7 of 8

Active Power response to	rising frequency	/time plots are	attached if	Y/N
Frequency injection tests	are undertaken i	n accordance	with Annex A.7.2.4.	
Alternatively, simulation re	esults should be	noted below:		
Test sequence at Registered Capacity >80%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	6010W	50,00Hz		
Step b) 50.45 Hz ±0.05 Hz	6000W	50,45Hz		
Step c) 50.70 Hz ±0.10 Hz	5760W	50,70Hz		
Step d) 51.15 Hz ±0.05 Hz	5200W	51,15Hz	6.2kW	20%/Hz
Step e) 50.70 Hz ±0.10 Hz	5760W	50,70Hz		
Step f) 50.45 Hz ±0.05 Hz	6000W	50,45Hz		
Step g) 50.00 Hz ±0.01 Hz	6010W	50,00Hz		
Test sequence at Registered Capacity 40% - 60%	Measured Active Power Output	Frequency	Primary Power Source	Active Power Gradient
Step a) 50.00 Hz ±0.01 Hz	3020W	50,00Hz		
Step b) 50.45 Hz ±0.05 Hz	3000W	50,45Hz		
Step c) 50.70 Hz ±0.10 Hz	2850	50,70Hz		
Step d) 51.15 Hz ±0.05 Hz	2575W	51,15Hz	3.1kW	20%/Hz
Step e) 50.70 Hz ±0.10 Hz	2850W	50,70Hz		
Step f) 50.45 Hz ±0.05 Hz	3000VV	50,45Hz		
Step g) 50.00 Hz ±0.01 Hz	3020	50,00Hz	7	

10. Protect	tion - Re-con	nection tin	ner.			
				starts after a ge 1 settings of		y of 20 s for
Time delay setting	Measured delay			reconnection what outside stage 1		
20.0s	75.2s		At 1.16 pu (266.2V)	At 0.78 pu (180.0V)	At 47.4Hz	At 52.1Hz
	that the Power on not re-connect.	Generation	No re- connect occurred	No re- connect occurred	No re- connect occurred	No re- connect occurred

MATERIALS & SAFETY - R&D

TR 28373

page 8 of 8

Backup: Fronius Primo UK

For inverter output					
Time after fault	Volts	Amps			
20 ms	8.52	53.3			
100 ms	7.77	36.3			
250 ms	7.63	25.6			
500 ms	7.61	19.5			
Time to trip	0.195	In seconds			
	al tests: If required by prant test schedule is attac	ched (tests to be undertaken at time	NA		
Confirm that the relev	vant test schedule is attac		NA		
Confirm that the relevon f commissioning) 14. Logic interface	rant test schedule is attac		NA YES		